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Who am I and what was my path?
Lawrence University, B.A,. Physics

• First-generation college student
• Research with toroidal confinement of 

pure-electron plasmas

University of Iowa, Ph.D, Physics
• Experiments conducted using LaPD.
• Shear Alfvén wave dispersion/damping
• Whistler wave absorption diagnostic to 

measure electron velocity distribution 
function

University of Wisconsin – Madison 
• Worked on Madison Symmetric Torus, a 

reversed field pinch (RFP) device
• Properties of turbulent cascade
• Current and energy transport caused by 

coherent electric and magnetic field 
fluctuations

Ripon College
• Visiting assistant professor of physics
• Continued collaboration on MST research

Washington College
• Faculty member, department chair
• Continued collaboration on MST research
• Began development of local plasma lab for 

the study of basic plasma waves and 
turbulence

Hobbies
• Biking
• Board games
• TTRPGs



Developing mathematical models

• What do I mean by a ‘model’?
• A model is a mathematical and conceptual framework used to approximate a 

physical phenomena, containing enough detail to capture the phenomenon’s 
essence while being small and simple enough to understand or analyze.

• Goals of developing models
• Balance accuracy and complexity
• Discuss role of approximations
• Find the simplest model that is still able to accurately describe phenomena of 

interest. Ignore details that are unimportant to your investigation.

• To determine best model for your purposes, it is critical to understand 
the approximations underpinning a given model
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Single particle motions: Results

(Images sourced from single particle motion presentations from summer course in prior years)
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How do we model the behavior of 
plasma containing many particles?

Treat as a conducting fluid!
But, let’s detour first.
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Brute-force 
method



Kinetic theory: 6D Phase Space Density
Particle density in 6D phase space for a single particle:
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Kinetic theory: 6D Phase Space Density
Particle density in 6D phase space for a single particle:

Particle phase-
space trajectories

𝑣𝑥

𝑥

Integral over x results in a 
value equal to 1.
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Kinetic theory: Track individual particles

(single particle)

(many particles)

(many particles, 
species s)

(many particles, 
electrons and ions)



Each particle is going to experience a force according to the Lorentz 
force law based on its location at a given time. Thus, we’ll examine 
a time derivative:

Kinetic theory: Plasma evolution over time

Statement of particle 
incompressibility
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Each particle is going to experience a force according to the Lorentz 
force law based on its location at a given time. Thus, we’ll examine 
a time derivative:

where

resulting in

Kinetic theory: Plasma evolution over time

Statement of particle 
incompressibility

Convective 
derivative



Kinetic theory: Klimontovich equation

Klimontovich + Maxwell’s 
equations provide an exact 
description of plasma and 

electromagnetic field evolution.

Mission accomplished!
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Kinetic theory: Klimontovich equation

Klimontovich + Maxwell’s 
equations provide an exact 
description of plasma and 

electromagnetic field evolution.

Mission accomplished?

Problem not 
tractable
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Must we really track every 
individual particle?



Kinetic theory: Smoothing approximation
Let’s instead try to track a smooth distribution function 
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Kinetic theory: Smoothing approximation
Let’s instead try to track a smooth distribution function 

We can relate this to our work thus far with the following:

Plug into Boltzmann equation
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Kinetic theory: Boltzmann equation

Collective behaviors Collisions
(Discrete particle nature)

Still too much info, as we need to track individual 
particles to precisely compute the RHS.
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Kinetic theory: Boltzmann equation
Vlasov
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Kinetic theory: Boltzmann equation

Approximations are made to the 
collisional term based on the 
specific problem being addressed.

Still challenging, both 
analytically and computationally.

Simplify further.
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Fluid Theory: What’s different?

• Kinetic theory:
• Klimontovich: Examine evolution of individual particle trajectories in 6D 

phase space and evolution of electromagnetic fields.
• Boltzmann: Examine evolution of smoothed particle densities in 6D 

phase space and evolution of electromagnetic fields.

• Fluid theory:
• Examine evolution of fluid elements characterized by macroscopic 

properties such as density, temperature, pressure in 3D configuration 
space



Fluid Theory: Quantities characterizing fluids

In our fluid theories, we will focus on macroscopic quantities of 
fluid elements:



Fluid Theory: Limitations

If fluid quantities are to adequately describe plasma properties, we 
must have nearby particles remain near to their neighbors.
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must have nearby particles remain near to their neighbors.
• High collisionality
• Low temperature

Little spread in particle velocities 
means nearby particles will remain 
nearby as they move.



Fluid Theory: Limitations

If fluid quantities are to adequately describe plasma properties, we 
must have nearby particles remain near to their neighbors.
• High collisionality
• Low temperature
• Strong magnetic field

In fusion plasmas, fluid theories 
tend to work best when describing 
motion perpendicular to the 
magnetic field. Kinetic treatment 
may still be required in parallel 
direction.



Fluid theory: Moment equations of Boltzmann

Use moments to find equations describing evolution of fluid quantities:
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• This is essentially a conservation law: Conservation of particles.

Rate of density 
change

Flux into and out 
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Fluid theory: Zeroth-order moment

• This is essentially a conservation law: Conservation of particles.
• Collisions tend to change individual particle velocities but do not 

greatly change a particle’s position.
• Multiply by species mass or species charge to get statements for 

mass conservation and charge conservation.

0

Rate of density 
change

Flux into and out 
of fluid element



Fluid theory: First-order moment
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Fluid theory: First-order moment

Momentum changes due to:
• a force acting on our fluid element
• imbalance in surrounding pressures (e.g. buoyancy)
• particle collisions

• Note: a species cannot change its own momentum through collisions. 
But, collisions with different species can change momentum. So, 

Collisional 
effects

Lorentz force 
term

Convective derivative 
of momentum density

Pressure 
gradient term



Fluid theory: Closure

Each moment equation depends on the next moment. Eventually, 
an assumption must be made to truncate the infinite series of 
moments.

Today, we will assume an isotropic distribution function which 
leads to:



Fluid theory: Two-fluid model

+ Maxwell equations

This represents the equations governing interacting electron and ion 
fluids passing through each other. 

This can still be complicated when dealing with realistic geometric 
effects. Let’s simplify down to a one-fluid picture.
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Fluid theory: Quantities describing single fluid

To simplify further, we’ll treat the plasma as a single fluid and 
examine the evolution of joint quantities such as



Fluid theory: MHD equations

By combining electron and ion moment equations together and 
remembering definitions for one-fluid quantities, we find:

+ Maxwell’s equations

Generalized Ohm’s Law



Fluid theory: MHD equations

By combining electron and ion moment equations together and 
remembering definitions for one-fluid quantities, we find:

+ Maxwell’s equations

Generalized Ohm’s Law

14 equations, 14 unknowns



Fluid theory: Ideal MHD equations

If we assume high conductivity and low frequency, we can simplify 
a little bit more. We call this Ideal MHD.



Fluid theory: Ideal MHD equations

If we assume high conductivity and low frequency, we can simplify 
a little bit more. We call this Ideal MHD.

10 equations, 
10 unknowns



Fluid theory: Ideal MHD successes

• Macroscopic equilibrium and stability of plasmas
• Design of tokamaks, stellarators, mirrors, RFPs.

• Drifts not present in single-particle picture
• e.g. The diamagnetic drift perpendicular to pressure gradients

• Investigations of instabilities in fusion plasmas
• Kink modes, ballooning modes, Tearing instabilities, edge localized modes

• MHD waves
• Alfvén, fast magnetosonic, and slow magnetosonic waves

• Magnetic convection and dissipation
• Solar dynamo, Parker spiral, magnetic reconnection

• Plasma turbulent cascades



Key takeaways
• Each method can provide valuable insight, allowing us to build 

intuition and to interpret results.
• Insights can be amplified by using multiple models.

Taken from J. Williams presentation, Plasma/Fusion summer school, 2022

Strengths



Any questions?
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