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A bit about me and how I got here!
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• B.S. Aerospace Engineering
• M.S. Aeronautical Engineering

• Ph.D. Fluid Mechanics (Plasma Physics) 
• Visiting Researcher

at ONERA (France)

• On a personal 
note, I enjoy 
painting, cooking 
and basketball 
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• Associate Research Physicist

• Computational Sciences Department

My role at PPPL

3

• Research interests: 

• Artificial intelligence and Machine learning

• Radio-frequency actuator modeling
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RF waves propagate in the ionosphere and magnetosphere
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Source: NOAA

Source: Kim et al. GRL (2023)Source: NASA

The propagation of radio 
waves relies in the 
reflection/transmission 
characteristics of the 
ionospheric plasma

Waves in the magnetosphere 
carry and couple energy, causing 
significant charged particle 
losses in Earth’s atmosphere
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RF waves also in solar corona 
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Source: Bose et al. The 
Astrophysical Journal (2024)

Source: NASA

Studies suggest that Alfvén wave 
propagation and reflection in the solar 
corona drive turbulence and help heat 
the solar corona
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Also in space plasma thrusters!
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Electrodeless Plasma Thrusters

RF HEATING SOURCE + MAGNETIC NOZZLE (MN) = PROPULSION

VASIMIR Helicon 
Thruster 

ECR 

MN MN

MN

Helicon 
antennas

Helicon antenna Coaxial + ECR
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RF waves also exist in fusion devices: what is their role?
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RF WAVES 

PLASMA

Transfer momentum and 
energy to plasmas
Applications:

1. Bulk heating
2. Non-inductive 

current drive
1. Fast control of 

profiles, scenario & 
impurity 

2. Wall conditioning
3. MHD-Instability 

suppression
4. Fast-ion tailoring
5. Start-up & breakdown
6. Etc…

Emission/Instabilities
Diagnostics:

1. Microwave 
reflectometers

2. Electron 
Cyclotron 
Emisison 

3. Thomson 
scattering

4. Soft X-rays 
diodes/cameras

5. Etc…
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The key frequencies in fusion devices
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Courtesy of N. Bertelli

06/11/25 Princeton Plasma Physics Laboratory               A. Sanchez-Villar - RF Heating and AI Introduction to Plasma and Fusion Course



• Maxwell’s Equations + Plasma model

• Fluid models (e.g. cold plasma 

approximation)

• Local / simplified dispersion relation

• wave propagation and absorption can 

be explained by the CMA diagram 

The RF modeling approaches are scenario dependent
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Source: Stix



The electron cyclotron resonance thruster 
ECRT, features a low temperature plasma 
discharge. Although the model cannot 
capture cyclotron damping, a cold-collisional 
model may suffice to provide reasonable 
damping.

A scenario where the cold plasma model may suffice
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ECRT prototype (ONERA)
Vacuum chamber (ONERA)

Plasma thrusters decimate mission cost of 
space missions

This ECRT:
Dimensions: few cm

Flow rate: 0.1 mg/s
Thrust: ~1N

Thrust efficiency ~10/15%

Magnetic nozzle 
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A scenario where the cold plasma model may suffice
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Sources: Sanchez-Villar et al. PSST (2021)
Sanchez-Villar et al. PSST (2023)

Studies show that parametric bounding 
surfaces affecting wave propagation in 
cold plasmas suffice to  explain the 
thruster heating mechanism. 

Validation and verification 
campaign of the thruster against 
experiments shows models 
strengths and weaknesses
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ECR

ECR

UHR



Plasmas in tokamaks are further complex to model
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• Kinetic approximation (e.g. hot plasma)

• Vlasov, unperturbed orbit and then 

applies a 1st order perturbation to the 

distribution function. 

• The result is a set of integrals 

(expressions involving Bessel function 

and plasma dispersion function. For 

further information see Stix).

06/11/25 Princeton Plasma Physics Laboratory               A. Sanchez-Villar - RF Heating and AI Introduction to Plasma and Fusion Course

• Important remarks

• Non-local dielectric tensor which is a function of 

the distribution function, propagation direction 𝒌, 

etc.

• Includes as Finite Larmor radius effects (𝑘⊥𝜌), 

Doppler (𝑘∥𝑣∥), Cyclotron damping (𝑛 ≠ 0), and 

Landau Damping (𝑛 = 0).



Methods to solve Maxwell’s equations?
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• Asymptotic methods (𝜆 ≪ 𝐿)

• Used in weakly inhomogeneous 

plasmas in the small-wavelength 

limit (𝜆 ≪ 𝐿)

• Geometrical Optics (GO)

• Ray tracing or WKB approximation

• Beam tracing or paraxial WKB 

approximation

• Simplified solutions

• Full-wave methods (𝜆~𝐿)

• Solve Maxwell equations directly

• Can deal with reflections

• Different computational methods 

including finite differences (FD), finite 

elements (FE), or Spectral.

• Computationally intensive
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Multiple RF heating schemes are available
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Scheme Name Typical f-band

ICRF/ICRH Ion Cyclotron Range of 

Frequencies

25-120 MHz

ICRF-HHFW High Harmonic Fast Wave 30-60 MHz

LHCD/LHH Lower Hybrid 2-8 GHz

ECRH/ECCD Electron Cyclotron 

Resonance

70-200 GHz

HH/HCD Helicon 0.4 - 1 GHz

EBW (O-X-B/X-B ) Electron Bernstein Wave 2-30 GHz

06/11/25 Princeton Plasma Physics Laboratory               A. Sanchez-Villar - RF Heating and AI Introduction to Plasma and Fusion Course



Some examples of ICRF heating codes
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• TORIC (Brambilla/Bilato)

• Semi-spectral FEM model

• Uses the FLR approximation

• AORSA (Jaeger)
• Complete non-local, integral operator for the dielectric 

response

• Valid to all orders in 𝑘⊥𝜌

• Local cartesian grid

• Petra-M: multi-physics FEM platform implemented by 

S. Shiraiwa (PPPL)

TORIC

AORSA

PETRA-M
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Courtesy of S. Shiraiwa and N. Bertelli



ICRF heating schemes: Minority Ion Cyclotron (WEST) 
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• Fast magnetosonic wave (FW)

• 1-10% of hydrogen or helium-3 to Deut. plasmas 

• FW polarization determined by majority ions

• Strong coupling to minority at the fundamental 

ion cyclotron (IC) resonance 𝜔 = 𝜔𝑐𝑠

• Appearance of an ion-ion hybrid resonance (IIH)

• Cut-off / resonance

Mode conversion to a backward 

mode called the ion Bernstein 
wave (IBW). FW can still exist 
after the IIH. IBW absorbed by 

electrons via Landau damping.
Conversion sensitive to minority 

concentration.

IIH

IBW

(small
wavelength)

IC

FW
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ICRF heating schemes: HHFW (NSTX-U)
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• FW is the main propagating mode

• 12 strap antenna located at the outboard 

midplane.

• Absorption of ions (High-harmonic IC)

and electrons via Landau damping.
Low field side

Excitation

High field side

Last Closed Flux Surface (LCFS)

FW 
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Simulation capability with different physics fidelity
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Physics Fidelity
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Simulation capability with different physics fidelity

19

Computational Expenses

Physics Fidelity
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Simulation capability with different physics fidelity
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Computational Expenses

Physics Fidelity
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Simulation capability with different physics fidelity
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Computational Expenses

Physics Fidelity
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Simulation capability with different physics fidelity
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Computational Expenses

Physics Fidelity
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Heating profiles are critical outputs for integrated modeling 
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Computational Expenses

Physics Fidelity
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Artificial intelligence to accelerate predictions
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Computational Expenses

Physics Fidelity

TORIC Simulation times 

unfeasible 
applications

• Scenario 
optimization

• Inter-shot 
predictive 

modeling

• Real-time 
control

06/11/25 Princeton Plasma Physics Laboratory               A. Sanchez-Villar - RF Heating and AI Introduction to Plasma and Fusion Course



25

SURROGATE MODEL FOR THE FORWARD PROBLEM: O(µs)

Regression accuracy 

measured by: 
1. Mean squared error 

(MSE) 

2. Coefficient of 
determination(R2)

Generate a database of TORIC 

solutions representative of the 
parametric space of interest

“Ground truths” are 

TORIC electron and ion 
power absorption 1D 

profiles

TORIC ICRF SPECTRUM SOLVER: O(min) M. Brambilla (1999)  PPCF 41

M. Brambilla (2002)  PPCF 44Methodology
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Artificial intelligence and machine learning (AI/ML)
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• Artificial Intelligence (AI): 
• Broad goal of creating system that can 

perform intelligent tasks

• Machine Learning (ML):
• A subset of AI where algorithms learn 

patterns from data rather than follow 

explicit rules 

• High-performance computing (HPC) be 

used to train and optimize the models 

and generate/manage the datasets
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ML paradigms
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Paradigms General Goal Examples of Algorithms

Supervised
Learn inputs->Outputs 

mapping 

Linear, Random Forest, 
Gaussian Processes, 

Neural Networks

Unsupervised
Discover hidden 

structure
k-means, DBSCAN 

Reinforcement
Learn to make 

sequences of decisions
Q-learning, Policy 

Gradients
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Supervised AI/ML models for Regression 
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• Random Forest Regressor (RFR)
• Ensemble of decision trees
• Final prediction average of the trees
• By splitting feature values to maximize information gain 

at each node, RFR can deal with nonlinear relationships
• Available in scikit-learn

• Multilayer perceptron (MLP)
• Feed-forward neural network built of perceptrons that 

together can approximate highly nonlinear mappings
• Careful hyperparameter tuning required
• Bayesian optimization. PyTorch Recommended 

• Gaussian Process Regressor (GPR):
• Bayesian regression method that treats predictions as 

distributions
• Provides uncertainty quantification
• Implementation with TensorFlow and GPflow

RFR

MLP

GPR
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• Flat-top scenario plasma properties 
(e.g. temperature, density, etc) as :

• 0/1 -> core/edge
• 𝛼 and 𝛽 : profile shape exponents

• Heating schemes:
• HHFW:  
• IC minority: 

• Plasma species: D (D-H).
• Equilibriums are assumed to be fixed to:

29

WEST - Shot 56898NSTX - Shot 138506
G. Taylor et al. (2012) PoP 19

J. Bucalossi et al. (2022) NF 62

Two databases for flat-top operation of NSTX and WEST
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• Standardization of data using training data, and principal component analysis on WEST 
outputs → dimensionality reduction, improved profile inference time and accuracy.

• Exploratory analysis resulted in outlier identification in the NSTX database:

30

Power PowerElectric field Electric field

N
S
T
X

22% outliers understood to be numerical. 

TYPICAL SCENARIO OUTLIER SCENARIO

Data is standardized and then analyzed and refined 
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Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

Full-wave + ML enables robust real-time capable ICRF models
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Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

• ROBUST:  Predict physical profiles beyond the original model 

capability, overcoming numerically challenging scenarios in HHFW

Deuterium - NSTX

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

TORIC

RFR
TORIC-fixed

TORIC

RFR (extrap.)

Full-wave + ML enables robust real-time capable ICRF models
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Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

• ROBUST:  Predict physical profiles beyond the original model 

capability, overcoming numerically challenging scenarios in HHFW

Deuterium - NSTX

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

TORIC

RFR
TORIC-fixed

Model 

limitation

TORIC

RFR (extrap.)

Full-wave + ML enables robust real-time capable ICRF models
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TORIC

RFR
TORIC-fixed

TORIC

RFR (extrap.)

Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

• ROBUST:  Predict physical profiles beyond the original model 

capability, overcoming numerically challenging scenarios in HHFW

Deuterium - NSTX

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

RFR corrects 

heating profile

Full-wave + ML enables robust real-time capable ICRF models
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TORIC

RFR
TORIC-fixed

TORIC

RFR (extrap.)

Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

• ROBUST:  Predict physical profiles beyond the original model 

capability, overcoming numerically challenging scenarios in HHFW

Deuterium - NSTX

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

RFR corrects 

heating profile

A. Sanchez-Villar et al

Nucl. Fusion, 64, 096039 (2024) 

Higher 

heating?

Full-wave + ML enables robust real-time capable ICRF models
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TORIC

RFR
TORIC-fixed

TORIC

RFR (extrap.)

TORIC (upgraded)

Deuterium - NSTX

• FAST: Inference time ⇨ TORIC O(min) | TORIC-ML O(µs)

• ACCURATE: Regression accuracy ⇨ NSTX R2= 0.95 ; WEST R2= 0.7 

• ROBUST:  Predict physical profiles beyond the original model 

capability, overcoming numerically challenging scenarios in HHFW

Deuterium - NSTX

TORIC

RFR

MLP

TORIC

RFR

MLP

Hydrogen - WEST

Higher 

heating?

RFR- Physical 

prediction

A. Sanchez-Villar et al

Phys. Plasmas (2025) 

Full-wave + ML enables robust real-time capable ICRF models
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Á. Sánchez-Villar et al

Phys. Plasmas (2025) 

Comparison at extrapolated inference to HHFW outliers 
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Á. Sánchez-Villar et al Phys. Plasmas (2025)

Final models for HHFW at NSTX (including GPR)
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● Train, test, save, load surrogates & results.

● Automatically optimize the hyperparameters (including architecture) for 

the RFR, MLP and GPR models for a given dataset + final training.

Bayesian Optimization Methods used to develop an 
Automated Surrogate Model Generator Suite
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Some final references

40

Email: asvillar@pppl.gov | asvillar@princeton.edu

Books RF:
Stix, Brambilla, 
Dawson, Bittencourt

RF models:
TORIC, AORSA,
Petra-M, etc.

Books AI/ML:
Bishop, 
Goodfellow, etc.

ML models:
PyTorch, TensorFlow, 
Sklearn, Gpflow, 
BoTorch

Some links:

• www.github.com/piScope/piScope

• www.github.com/piScope/PetraM_RF

• www.scikit-learn.org

• www.pytorch.org ; www.tensorflow.org

Special thanks: to N. Bertelli, S. Shiraiwa, and to the organizers and participants of the SULI
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