

Plasma Control

Doménica Corona June 12th 2025

About Doménica

lcoronar@pppl.gov

Posdoc at PPPL since 2022 \rightarrow ML, Control, Real-time

Computational Sciences Department (CSD)

Go check the CSD/PPPL webpage https://www.pppl.gov/research/computational-sciences

Have you heard this words? Put your hand up!

PID controller

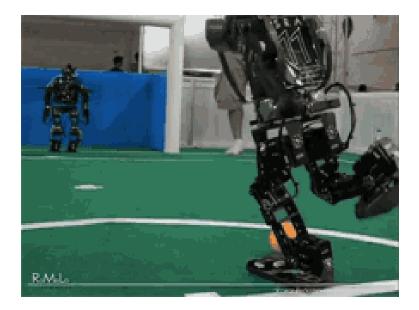
Magnetic Confinement

Plasma equilibrium

Poloidal Field Coils

Vertical Displacement Event (VDE)

State-Space models

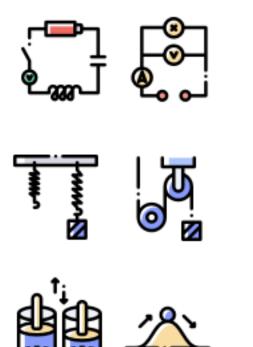

Sensor-Actuator

Disruption

Surrogate model

Real-time Control

) з



Let's get started

Just like a robot can wreck your factory floor, an uncontrolled plasma can wreck your machine

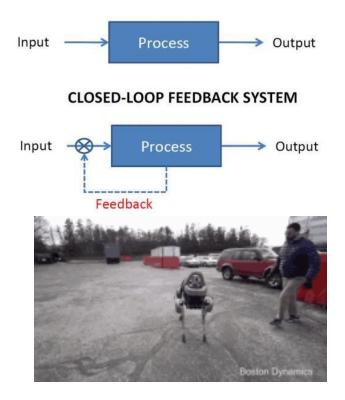
Control systems

Regulating a process or system in order to get a desired behavior.

The key components:

- Plant: The system to be controlled. The current in a circuit. The velocity of a mass. The temperature of a liquid. A tokamak!
- Sensor: Measures the plant's outputs.)
- Controller: Computes and action to be applied
- Actuator: Applies the control signal ... the voltage command to a power supply

Open Loops vs Closed Loop


Open-Loop: Controller acts without any feedback, there is no correction of the error

Closed-Loop: Controller uses a sensor feedback to minimize the error

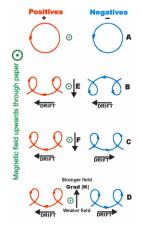
What are the control general objectives?

- **Stability**: Prevent the system from diverging and becoming unstable
- **Tracking:** Follow a reference accurately.
- **Disturbance Rejection:** Reject external perturbations

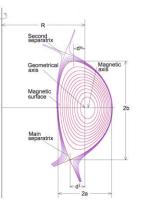
OPEN FEEDBACK SYSTEM

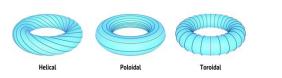
Magnetic confiment basics

How Magnetic Fields Confine Plasma?


In a uniform magnetic field, charged particles gyrate around field lines

Without field curvature: particles drift \rightarrow they need field shaping


Toroidal & Poloidal Fields

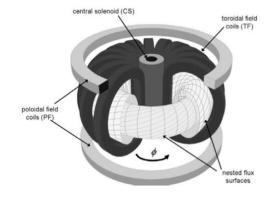


 B_P generated by the plasma current, it "twists" field lines into closed helices

https://www.plasma-universe.com

Why external PF coils are needed?

Plasma-generated Poloidal Field Is Insufficient

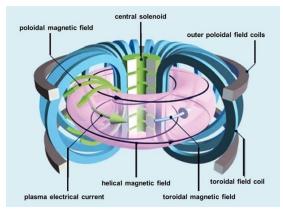

The field from the plasma current lp alone cannot maintain desired equilibrium and shape

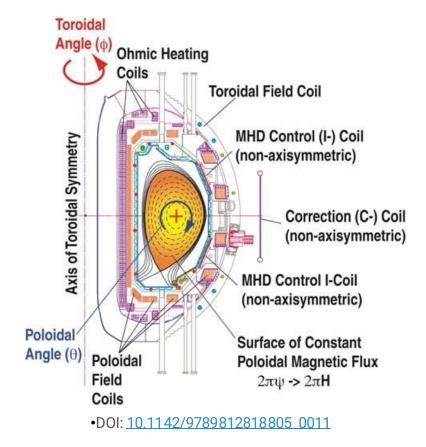
Equilibrium & Control position

External PF coils supply adjustable magnetic flux to hold the plasma column at the correct major radius and vertical position.

Shape & Stability Shaping

By varying PF coil currents, we can control elongation and triangularity of lux surfaces, improving confinement and suppressing instabilities


ه ((


Why tokamak control matters?

Why do we need active control in a tokamak????

Plasma is confined by a combination of toroidal and poloidal magnetic fields

Small deviations in field balance can cause the plasma to drift!

) 9

Why tokamak control matters?

What are the risks of having an uncontrolled plasma?

The so famous Vertical Displacements Events (VDEs) \rightarrow Fast upward/downward drifts leading to a wall contact

Disruptions \rightarrow Sudden loss of confinements, it causes thermal and electromagnetic loads on the vessel Wall damage and lost of operations \rightarrow Damage in the tiles, overstressing of the coils and time of our machine not operating

Small deviations in field balance can cause the plasma to drift!

Why is vertical position critical?

Vertical instabilities grow very fast \rightarrow they must be detected almost instantly

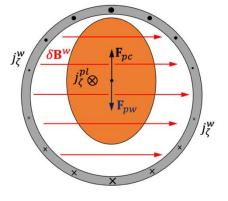
Without stabilization, the plasma touches the top or bottom of the vessel \rightarrow aborted discharge

Vertical Instability in a tokamak

Inherent Unstable Equilibrium

An elongated plasma column has no natural restoring force in the vertical direction

Small vertical displacements grow exponentially without feedback

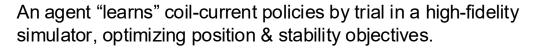

Requires detection and correction on less than one millisecond timescales

Dependence on Plasma Shape

Higer elongation $\kappa \rightarrow$ faster vertical growth Triangularity δ and plasma current profile also influence stability

Need for active feedback

External PF coils + real-time controller can avoid the instability



Analytical estimates of the vertical displacement growth rate in tokamaks with a resistive wall," *Physics of Plasmas* **32**, 032511

Magnetic Control of Tokamaks via Deep Reinforcement Learning

So.. What's now the problem? (Solutional controllers struggle with complex, time-varying) plasma dynamics and MHD instabilities, engineers needed to tune a lot during operations

Reinforcement Learning solution 🤓

Results

Tested on real-time achieving a faster suppression of the vertical drifts

nature

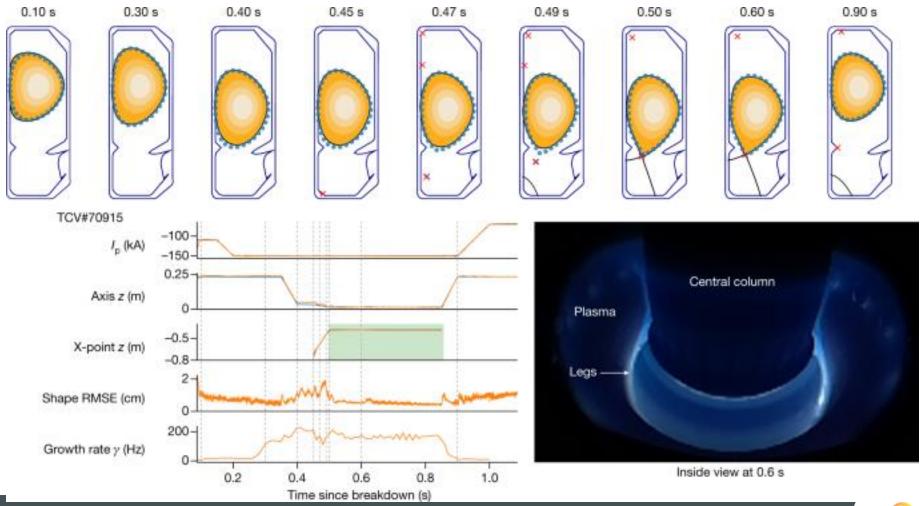
Explore content Y About the journal Y Publish with us Y

nature > articles > article

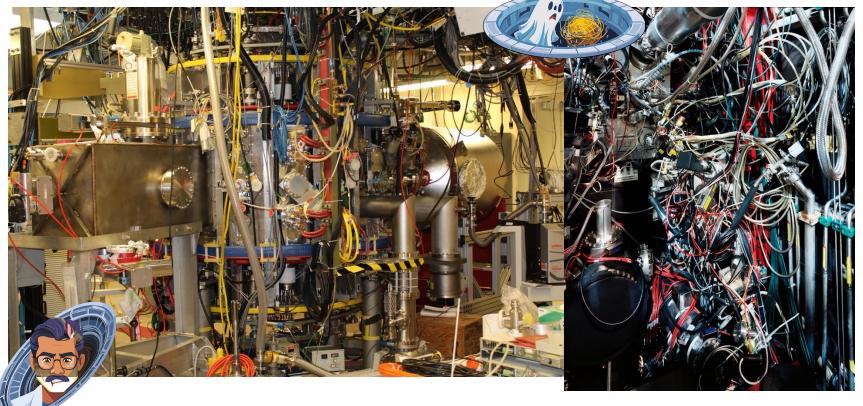
Article Open access Published: 16 February 2022

Magnetic control of tokamak plasmas through deep reinforcement learning

Jonas Degrave, Federico Felici 🖾, Jonas Buchli 🖾, Michael Neunert, Brendan Tracey 🖾, Francesco Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Do alperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merk Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Martin Riedmiller + Show authors


Nature 602, 414-419 (2022) | Cite this article

251k Accesses | 441 Citations | 2409 Altmetric | Metrics


plasma current, all of which must be designed to not mutually interfere⁶. Most control architectures are further augmented by an outer control loop for the plasma shape, which involves implementing a real-time estimate of the plasma equilibrium910 to modulate the feedforward coil currents8. The controllers are designed on the basis of linearized model dynamics, and gain scheduling is required to track time-varying control targets. Although these controllers are usually effective, they require substantial engineering effort, design effort and expertise whenever the target plasma configuration is changed, together with complex, real-time calculations for equilibrium estimation.

A radically new approach to controller design is made possible by using reinforcement learning (RL) to generate non-linear feedback controllers. The RL approach, already used successfully in several challenging applications in other domains¹¹⁻¹³, enables intuitive setting of performance objectives, shifting the focus towards what should be achieved, rather than how. Furthermore, RL greatly simplifies

Engineering & Control approaches

When they talk about control in tokamak

Density control

Fueling and pumping

Magnetic Control

PF coils and plasma stabilization

Whenever someone says "control", they really mean " magnetic control", density folks are a silent majority 😜

The PF coils ... again 🙄 in case we forgot it

Equilibrium and position Control

Adjust coil currents to maintain the plasma major-radius and vertical position

Fast feedback loop: position \rightarrow PF coils drive

Shaping & Stability Shaping

Vary coil currents to control elongation κ and triangularity δ

Tailor flux-surface geometry to suppress MHD modes

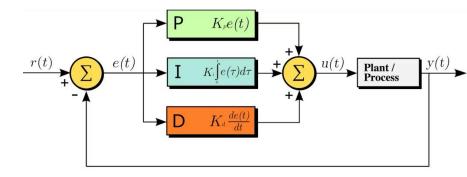
Inductive support & Ramp-rate

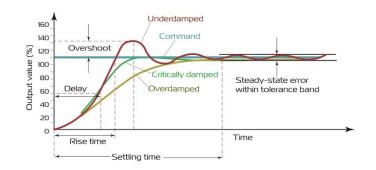
During current ramp-up/down, PF coils provide changing flux to drive plasma current too Ensures smooth transition without large loop-voltage spikes

PF 2 PF 3 PF 4

) 16

ITER coils


PID Controller


What is a PID controller?

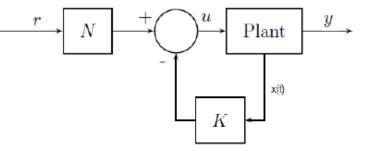
Proportional: acts on current error e(t) = r(t) - y(t)

Integral: eliminates steady-state error by accumulating $\int e(t)dt$

Derivative: predicts future error via $\frac{d}{dt}e(t)$

State-Space Feedback & MIMO control

Why State-Space?


Captures multi-variable dynamics in the matrix form:

$$\dot{x} = Ax(t) + Bu(t) \quad y = Cx(t) + Du(t)$$

Full state feedback

Control law: u(t) = -Kx(t) + r

Places closed-loop poles for desired speed & damping

State-Space Feedback & MIMO control

Design Methods

LQR: solves $min \int (x^T Q x + u^T R u) dt$

Kalman filter: estimates x from noisy sensors

Implementation in PCS

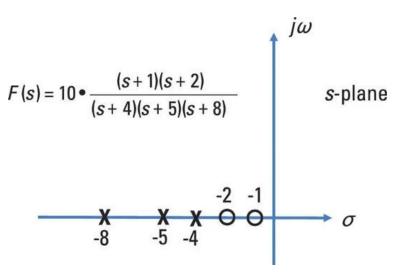
On a Real-time set up: state estimation \rightarrow Gain x State \rightarrow coil commands

But wait ... what is a "pole" what is a "PCS" ??? 😕

Poles and Zeros

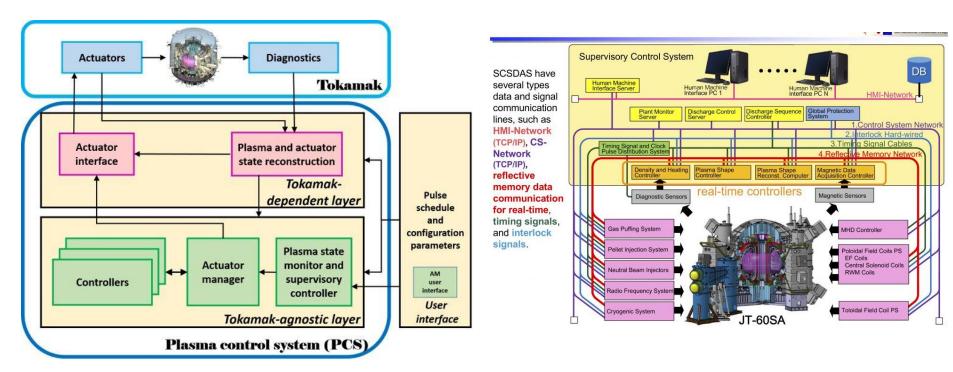
Transfers function Basics

Any linear system can be written as:


$$H(s) = \frac{N(s)}{D(s)} = \frac{(s - z_1)(s - z_2) \dots}{(s - p_1)(s - p_2) \dots}$$

Where z are the zeros (roots of numerator)

P are the poles (roots in denominator)


Zeros → Act like "notches" to the response, they block certain behaviors Poles → Natural modes of the system, determine how fast or slow the system responds

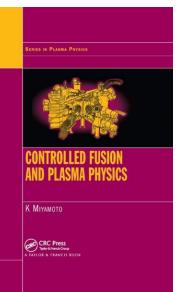
Stability \rightarrow If all poles lie in the left half of the s-plane ($Re\{p_i\} < 0$)

20

The plasma control systems

Personal favorite:

Marco Ariola Alfredo Pironti



Magnetic Control of Tokamak Plasmas

Plasma Physics and Fusion Energy

Jeffrey Freidberg



<text>

Jason Parisi . Justin Ball

Wrote by PPPL folk

22

To change this, go to Insert > Header and Footer...

$$L\frac{dI_{MEAS}(t)}{dt} + RI_{MEAS}(t) = V_{COMMAND}(t)$$

$$I[k+1] = I[k] + \frac{T_s}{L} (V_{COMMAND}[k] - RI[k])$$

$$V_{COMMAND}[k] = K_p e[k] + K_I T_s \sum_{j=0}^{k} e[j]$$

