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Talk Outline

• Why the Fuel Cycle matters

• And its link to the plasma

• What makes up a fuel cycle?

• Inventory and flow

• Technologies (there are many – we will cover some)

• Challenges in the Fuel Cycle

• Where are we now and where do we need to be?

• Who works on the fuel cycle?
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Why the Fuel Cycle 
Matters
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The importance of the fuel cycle
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Continuous, 
efficient supply

Self-sufficiency
Low burn 
fraction

Accountancy Safety
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The hydrogen isotopes
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• Protium

• Abundant

• Not used as a 
fusion fuel

p

• Deuterium

• Naturally Occurring 
– 130-160 ppm in 
H

• Continuously 
consumed

• Tritium

• Beta emitter (18.6 
keV)

• 12.3 year half life

• ~30 kg total global 
inventory

• Need to produce 
this continuously!

p
pn n

n
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The hydrogen isotopes
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p p
pn n

n

Property Hydrogen (¹H) Deuterium (²H or D) Tritium (³H or T)

Atomic number 1 1 1

Neutrons 0 1 2

Relative atomic mass 1.00784 u 2.01410 u 3.01605 u

Mass (kg/mol) 1.00784 g/mol 2.01410 g/mol 3.01605 g/mol

Boiling point (K) 20.271 K 23.67 K ~25 K

Radioactive? No No Yes (β⁻, t½ ≈ 12.3 yrs)

Natural abundance >99.98% ~0.0156% Trace (≈ 10⁻¹⁸ in nature)

Diatomic as a gas? Yes Yes Yes
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How much Tritium do we use?
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1,000 MWfus 

Recall: 1
3𝑇 + 1

2𝐷 → 0
1𝑛 + 2

4𝐻𝑒 + 17.6 𝑀𝑒𝑉 

Ereaction  = 17.6 MeV = 17.6 × 1.602 × 10−13 J = 2.8195 × 10−12 J

1 x 109 J s-1 / 2.8195 × 10−12 J reaction-1 = 3.55 x 1020 reactions s-1

MT = 3.016 g/mol

3.55 x 1020 atoms s-1 / 6.022 x 1023 atoms mol-1 = 5.90 x 10-4 mol s-1

5.90 x 10-4 mol s-1 x 3.016 g mol-1 = 1.78 x 10-3 g s-1

~ 56.1 kg year-1
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Tritium Sources and Scarcity

• Only current sources of tritium: Canada, South Korea and Romania 

• Through heavy water moderated fission plants

• With ~ 30 kg in commercial existence – cost is ~ 30,000+ $/g

• Tritium use in defense – highly regulated commodity

• Produced in fusion through Lithium interaction with a neutron:

• 3
6𝐿𝑖 + 0

1𝑛 → 1
3𝑇 + 2

4𝐻𝑒 + 4.78 𝑀𝑒𝑉 (requires thermal neutron)

• 3
7𝐿𝑖 + 0

1𝑛 → 1
3𝑇 + 2

4𝐻𝑒 + 0
1𝑛  − 2.47 𝑀𝑒𝑉 (requires high energy neutron)

• Natural lithium is 7.5 % Li-6 and 92.5 % Li-7
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How much Tritium burns?
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𝑓𝑏 =
𝑛 𝜎𝑣 𝜏 ∗

2 + 𝑛 𝜎𝑣 𝜏 ∗

𝜏 ∗=
𝜏

1 − 𝑅
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Key Concepts in the Fuel Cycle - Permeation
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Key Concepts in the Fuel Cycle - Permeation
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Key Concepts in the Fuel Cycle - Permeation
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Key Concepts in the Fuel Cycle - Permeation
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Membrane

Ionization
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Key Concepts in the Fuel Cycle - Permeation
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Membrane

Diffusion
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Key Concepts in the Fuel Cycle - Permeation
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Membrane

Recombination

T

T

T

T

D

D

D

He

SI

D

T

D

T

D

T

D

T

D
He

SI

He

SI

He

SI

© 2025 Tokamak Energy



Key Concepts in the Fuel Cycle - Permeation
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Membrane

Desorption
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Materials with good 
adsorption properties: Pd

Materials with fast diffusive 
properties: V, Ta, Ti
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Key Concepts in the Fuel Cycle – Isotopic Differences
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• Difference in mass leads to:

• Differences in boiling points

• Difference in diffusivity through materials

• Isotopic exchange can also occur

• Tritium will prefer to be in bigger polar molecules like water vs. staying in HT form

• This process is instantaneous

• These can help us separate out these molecules



Key Concepts in the Fuel Cycle – Hydrogen Embrittlement

20

D
D

T

T
H

H

Hydrogen is attracted to sinks 
in materials such as grain 
boundaries and defects
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Key Concepts in the Fuel Cycle – Hydrogen Embrittlement
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D
D

H H

T
T

Robertson, I. A. et al.,"Hydrogen Embrittlement 
Understood", JOM 67(5), 1036–1046 (2015).
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Key Concepts in the Fuel Cycle – Hydrogen Embrittlement
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D
D

H H

T
T

Shibata, A. et al."Hydrogen-Related Fracture Behavior under Constant Loading 
Tensile Test in As-Quenched Low-Carbon Martensitic Steel",
Metals 12(3), 440 (2022).
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Key Concepts in the Fuel Cycle – Hydrogen Embrittlement
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D
D

H H

T
T

Mechanism Description

Hydride 
formation

Brittle metal hydrides form inside grains

Decohesion
H weakens atomic bonds at grain 
boundaries

Dislocation 
interaction

H enhances crack growth at stress 
concentrators
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Key Concepts in the Fuel Cycle – Polymer Challenges
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• Polymers (in general) are not 
preferred for tritium service but are 
normally needed in seals, gaskets, 
O-rings, valves, flexible tubing

• Tritium can degrade the material 
properties causing cracking and 
leaking through loss of elasticity

Effect Mechanism

Radiolysis
Tritium beta decay releases ~5.7 
keV -> ionizes/breaks chemical 
bonds

Gas evolution
Formation of H₂, CH₄, and other 
small molecules → blistering, 
pressure build-up

Embrittlement
Chain scission lowers molecular 
weight → brittle fracture

Crosslinking
Radiation-induced bonding 
between chains → stiffens 
material

Swelling and cracking
From accumulated gas or 
uneven degradation
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What makes up a fuel 
cycle?
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Simplified Block-Flow Diagram
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Simplified Block-Flow Diagram
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Simplified Block-Flow Diagram
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Simplified Block-Flow Diagram

29

Plasma

Fuelling

Exhaust
Isotope 

Separation

Storage

Trace 
Tritium

Stack + 
Release

Tritium 
Breeding

T D

Unburnt fuel 
and impurities 

exhausted

n

Neutrons 
interact with Li 

making T

Li

He

SI

H

© 2025 Tokamak Energy



Simplified Block-Flow Diagram
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Simplified Block-Flow Diagram
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Simplified Block-Flow Diagram
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As always – there is always more!
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And this is 
still just a 

Block Flow 
Diagram!
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As always – there is always more!
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Questions:

Why are we interested in 
highlighting heat exchangers in 
the fuel cycle? 

Where could the need for air 
detritiation system come from?

The first wall and divertor are on 
this diagram – why? Hint: 
remember your PMI lecture

© 2025 Tokamak Energy
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Fuelling

• Fueling controls the fusion 
power out and allows for the 
fusion reaction to be 
maintained

• Fueling must penetrate the 
core plasma – to allow as 
much of it to fuse as possible

• Fuel that does not make it to 
the core adds to the pumped 
flux out of the tokamak and 
must be recycled fast

Method Description Pros Cons

Gas Puffing
Injects gas near 
plasma edge

Simple, robust, 
low-cost

Low fuelling 
efficiency (η), 
most fuel stays 
at the edge

Pellet Injection

High-speed 
frozen D/T 
pellets fired into 
plasma

Penetrates 
deeper, 
improves η and 
β

Cryo systems 
required, some 
mass loss during 
ablation

Neutral Beam 
Injection

High-energy 
neutral atoms (D 
or T) injected 
into core

Also heats 
plasma, can 
drive current

Requires ultra-
pure gas, high 
tritium losses, 
complex system

© 2025 Tokamak Energy
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Fuelling

Pellet Injection – Pellet Injectors!

Gas Feed

T
T

D
D

AmbientT
T

T
T

D
D

D
D

T
T
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Fuelling

Pellet Injection – Pellet Injectors!

LN2 Precooler
T
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D
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D
D
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Fuelling

Pellet Injection – Pellet Injectors!

40 K Precooler
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Fuelling

Pellet Injection – Pellet Injectors!

Liquifier T
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Fuelling

Pellet Injection – Pellet Injectors!

Extruder T

T

D
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T
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T D D
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Fuelling

Frozen Pellets Cutter Acceleration Guiding Tube Plasma

Type How It Works Speed

Gas gun
High-pressure gas 
propels pellet down a 
barrel (like a cannon)

~300–1000 m/s

Centrifugal launcher
Rotating arm flings pellet 
into guide tube

Up to ~1000 m/s

© 2025 Tokamak Energy
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Fuelling

• There are large uncertainties around fueling 
efficiencies, with these range from ~10-90 %

• Fueling is critical for the fuel cycle requirements, 
but is more critical for the plasma itself

• Aids control of plasma burn

• Aids control of density profiles

• Poor fueling could also contribute to things like L-H 
transitions

• The pellet mass, injection speed and geometry 
are all parameters to tweak

• Often the ExB drift is the biggest parameter - mean 
high field side fueling is a must to improve efficacy 
and fusion burn Combs, S. K., & Baylor, L. R. (2018). Pellet-Injector Technology—Brief 

History and Key Developments in the Last 25 Years. Fusion Science and 
Technology, 73(4), 493–518.
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Exhaust

45

Exhaust – Vacuum Systems

• Vacuum acts to reduce the pressure at inlet

• Molecules move from high pressure to low 
pressure

• (usually) pressure is then increased after pump 
[compression ratio]

• This allows us to pump the species that have 
reached the SOL and been accelerated to the 
divertor to reduce pressure build up in the 
chamber
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Exhaust
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Exhaust – Vacuum Systems

• Vacuum acts to reduce the pressure at inlet

• Molecules move from high pressure to low 
pressure

• (usually) pressure is then increased after pump 
[compression ratio]

• This allows us to pump the species that have 
reached the SOL and been accelerated to the 
divertor to reduce pressure build up in the 
chamber

Particles 
neutralize on 

divertor plates

T
T

D
D

T
T

T
TT

T D
D

D
D
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Exhaust
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Exhaust – Vacuum Systems

• Vacuum acts to reduce the pressure at inlet

• Molecules move from high pressure to low 
pressure

• (usually) pressure is then increased after pump 
[compression ratio]

• This allows us to pump the species that have 
reached the SOL and been accelerated to the 
divertor to reduce pressure build up in the 
chamber

Vacuum Pumps 
pump out 
particles

T
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D

D
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Exhaust

48

Exhaust Pumping

• Pump out unburnt hydrogen isotopes, He ash 
and impurities (both intentional such as Ar and 
residual such as W particles)

• Key to maintain a ‘clean’ plasma

• Depends on:

• Conductance [C] - How easily gas flows through a 
duct or pipe to reach the pump (divertor geometry), in 
L/s

• Pumping Speed [S] - The rate at which the pump can 
remove gas (pump type and design), typically in L/s or 
m³/s

Pump Type
Operating Pressure 
Range (mbar)

Notes

Roughing Pumps 1e3 to 1e-1
Rotary vane or 
scroll; used for 
initial pump-down

Roots Blower 1e2 to 1e-2

Boosts flow 
between roughing 
and high-vacuum 
stages

Turbomolecular 
Pumps

1e-3 to 1e-9
Requires backing 
pump; excellent for 
high vacuum

Cryopumps 1e-3 to 1e-9

Ideal for hydrogen 
isotopes; based on 
cryocondensation/s
orption

Diffusion Pumps 1e-3 to 1e-7

Oil-based; used less 
in fusion due to 
contamination 
concerns

NB: we use lots of these pumps all around the 
fuel cycle!

© 2025 Tokamak Energy



Exhaust
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Exhaust Pumping

Pump Type
Operating Pressure 
Range (mbar)

Notes

Roughing Pumps 1e3 to 1e-1
Rotary vane or 
scroll; used for 
initial pump-down

Roots Blower 1e2 to 1e-2

Boosts flow 
between roughing 
and high-vacuum 
stages

Turbomolecular 
Pumps

1e-3 to 1e-9
Requires backing 
pump; excellent for 
high vacuum

Cryopumps 1e-3 to 1e-9

Ideal for H₂, He, and 
T₂; based on 
cryocondensation/s
orption

Diffusion Pumps 1e-3 to 1e-7

Oil-based; used less 
in fusion due to 
contamination 
concernsITER Website
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Isotope 
Separation
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Isotope 
Separation
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Separating hydrogen isotopes from other gases

Palladium Diffusers

• Allows H2, D2 and T2 to pass through 
selectively blocking other gases

• Operate continuously (limitation is lifetime of 
the membrane)

• High temperature (>300°C), pressure 
gradient across membrane, thin membrane
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Isotope 
Separation
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Separating hydrogen isotopes from other gases

Palladium Diffusers
T D

He SI

H

T D

He

SI

H

T

D

H

T

DH

Challenge Notes

Embrittlement
Use Pd-Ag (or other Pd 
based) alloys to resist 
cracking

Contaminants
CO, H₂O can poison 
membrane

Cost Pd is rare and expensive

Throughput limits
Temperature and surface 
area limited



Isotope 
Separation
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Separating hydrogen isotopes from other gases

Palladium Diffusers
T D

He SI

H

T D

He
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DH

Challenge Notes

Embrittlement
Use Pd-Ag (or other Pd 
based) alloys to resist 
cracking

Contaminants
CO, H₂O can poison 
membrane

Cost Pd is rare and expensive

Throughput limits
Temperature and surface 
area limited



Isotope 
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Separating hydrogen isotopes from other gases

Palladium Diffusers - example

Morgan, G. A., Hodge, B. J., & Poore, A. S. (2021). Performance Testing of a 
Palladium-Silver Diffuser for Tritium Processing. Fusion Science and Technology, 
77(6), 497–506.



Isotope 
Separation
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Separating hydrogen isotopes from other gases

Palladium Diffusers - example

Parameter Value

Temperature 400°C

Feed pressure 700–1140 Torr (~0.9–1.5 bar)

Feed gas compositions 96%, 50%, 2% H₂ (balance N₂)

Flow rates tested 100 – 3000 sccm

Membrane material Pd-Ag alloy (microchannel tubes)

Membrane surface area 634 cm²

Tube design Inside-out flow, ~300 µm wall gap
Morgan, G. A., Hodge, B. J., & Poore, A. S. (2021). Performance Testing of a 
Palladium-Silver Diffuser for Tritium Processing. Fusion Science and Technology, 
77(6), 497–506.
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Isotope 
Separation
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Separate Tritium from other hydrogen isotopes

Cryo Distillation Columns

• A cryogenic distillation column separates 
hydrogen isotopes (H₂, D₂, T₂) based on 
boiling point differences at very low 
temperatures.

• The top product is gas enriched in lighter 
isotopes (HH, HT), while the bottom is liquid 
enriched in tritium

• Multiple stages required

T

D

H

T D
H

T

D

H
T

D

H

Reboiler

Condenser
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Separate Tritium from other hydrogen isotopes

Cryo Distillation Columns

• A cryogenic distillation column separates 
hydrogen isotopes (H₂, D₂, T₂) based on 
boiling point differences at very low 
temperatures.

• The top product is gas enriched in lighter 
isotopes (HH, HT), while the bottom is liquid 
enriched in tritium

• Multiple stages required
T

D

H

T

D
H

T

D

H

T

D

H

Reboiler ~25-27 K

Condenser ~20 K

Full Reflux
Align and stabilize the isotopologue 
concentration gradient – no product 
removal
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Separate Tritium from other hydrogen isotopes

Cryo Distillation Columns

• A cryogenic distillation column separates 
hydrogen isotopes (H₂, D₂, T₂) based on 
boiling point differences at very low 
temperatures.

• The top product is gas enriched in lighter 
isotopes (HH, HT), while the bottom is liquid 
enriched in tritium

• Multiple stages required

T

D

H

T

D

H

T

D

H

T

D

H

Reboiler ~25-27 K

Condenser ~20 K

Partial Reflux
Start tapping off the top and bottom 
products (a fraction of the condensate 
reused as per reflux ratio)
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Pd Diffusers

Metal Foil 
Pumps

Compound 
Cryopumps

TCAP

Gas 
Chromatograp

hy

PSA

Cryo 
distillation

Getter Beds
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Tritium 
Breeding
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Breed Tritium from Lithium Compounds (more in Lane’s Talk!)

3
7𝐿𝑖 + 0

1𝑛 → 1
3𝐻 + 2

4𝐻𝑒 + 0
1𝑛

3
6𝐿𝑖 + 0

1𝑛 → 1
3𝐻 + 2

4𝐻𝑒

High energy 
neutrons

Thermal 
neutrons



Tritium 
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Breed Tritium from Lithium Compounds (more in Lane’s Talk!)

Zinkle & Snead (2014) Designing Radiation Resistance in 
Materials for Fusion Energy, Annu. Rev. Mater. Res., 44, 241–
267

Liquid Solid

• Breeder: Li, Li/Pb, Molten 
Salt

• Coolant: Breeder, Water, 
Helium, Molten Salt

• Multiplier: Li-7, Be, Pb

• Breeder: Lithium Oxides, 
Ternary Oxides, Other

• Coolant: Water, Helium

• Multiplier: Be, Pb
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Storage

© 2024 Tokamak Energy  Private and Confidential 67

• Beds that absorb and release hydrogen 
isotopes (T₂, D₂, H₂) by forming solid metal 
hydrides.

• Act like chemical sponges for tritium.

• Reversible storage: heat to release, cool to 
store.

• High volumetric density compared to gas 
cylinders.

• Passive safety: tritium is chemically bound in 
solid phase.

Metal Hydrides

Material Hydride

Uranium UH₃

LaNi₅ LaNi₅Hx

ZrCo ZrCoHx

Ti, FeTi, Pd various

T

T

M M M

T

T T
T

M

T

T

T

T T
T



M

Storage

© 2024 Tokamak Energy  Private and Confidential 68

• Beds that absorb and release hydrogen 
isotopes (T₂, D₂, H₂) by forming solid metal 
hydrides.

• Act like chemical sponges for tritium.

• Reversible storage: heat to release, cool to 
store.

• High volumetric density compared to gas 
cylinders.

• Passive safety: tritium is chemically bound in 
solid phase.

Metal Hydrides

Material Hydride
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• Beds that absorb and release hydrogen 
isotopes (T₂, D₂, H₂) by forming solid metal 
hydrides.

• Act like chemical sponges for tritium.

• Reversible storage: heat to release, cool to 
store.

• High volumetric density compared to gas 
cylinders.

• Passive safety: tritium is chemically bound in 
solid phase.

Metal Hydrides
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• α-phase (left side)
Hydrogen is dissolved in the metal — easy in, 
easy out. Pressure rises quickly.

• α + β Plateau (middle)
Metal and hydride coexist. Large amounts of 
hydrogen are absorbed or released at nearly 
constant pressure — ideal for storage and 
delivery.

• β-phase (right side)
The hydride is full. Further hydrogen uptake 
requires much higher pressure — less 
efficient for operation.

Metal Hydrides

ITER Website – Uranium Beds

James et al. (2017), Tritium Aging of LaNi₄.₁₅Al₀.₈₅ (LANA.85), Fusion 
Science and Technology, 71(3), 565–569
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Trace 
Tritium

• Trace tritium recovery systems deal with trace 
tritium in systems:

• Trace tritium in waste streams from isotope separation 
systems (tritium recovery is not 100 %)

• Reactor coolant streams

• Air from gloveboxes (especially due to tritium release 
during maintenance periods)

• Process gases and liquids

• Example systems are electrolysis-based systems 
for water detritiation or getter beds to capture 
hydrogen or HTO from gas steams for gas 
detritiation
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Iwai et al., 2002“The Water Detritiation System of the ITER Tritium Plant” 
Fusion Science and Technology, 41(3P2), 1126–1130



Trace 
Tritium
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Iwai et al., 2002“The Water Detritiation System of the ITER Tritium Plant” 
Fusion Science and Technology, 41(3P2), 1126–1130



Fuel Cycle Technologies

• Several technologies have been presented [we have gone in to varying detail on these!]

• It is important to consider the way we use tritium properties, rather than the technologies 
themselves!

• There are many technologies that could be used for the different blocks you have seen

• They utilize different things e.g.:

• The permeation properties of hydrogen allow for hydrogen isotope separation from other gases

• The boiling point differences alloy hydrogen isotope separation from each other

• Chemical reactions between hydrogen isotopes and other molecules

• The fuel cycle is a purification process, where we attempt to get as much deuterium and tritium back 
to the fueling systems as fast as possible
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Challenges in the fuel 
cycle
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Current Fuel Cycles

• There are not any continuous fuel cycles in operation today

• Historically, fuel cycles have been batch operated

• While the learning from these is critical – these systems will not be suitable for commercial fusion 
devices

• The only currently operating DT fuel cycle is at JET AGHS (Joint European Torus – Active Gas 
Handling System)
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The key challenges

• Tritium Breeding Ratio – the ratio of tritium produced in the blanket to the tritium used must be >1 
[more in Lane’s talk after me!]

• Big startup inventories

• It takes time to recycle unburnt and breed more tritium – in the meantime the plasma must be fuelled externally

• As tritium is scarce, this initial startup inventory must be minimized

• Building an inventory for future plants – doubling time

• Tritium accountancy – how do we keep track of all the tritium

• We need continuous methods of tracking tracking, and the concentrations in each of our Fuel Cycle systems

• Understanding losses in the system

• We don’t have a working continuous fuel cycle yet – how can we understand where those losses will be
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Startup Inventory
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92© 2025 Tokamak Energy  Private and Confidential

Plasma

Fuelling

Exhaust
Isotope 

Separation

Storage

Trace 
Tritium

Stack + 
Release

Tritium 
Breeding

T

T

T

TT

T

T



Startup Inventory
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Speeding up processing times - example
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Speeding up processing times
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• Instead of having a single isotope separation 
function have a fast-rebalancing loop and 
one for trace tritium recovery

• This is sometimes called direct internal 
recycling

• Allow only hydrogen isotopes to permeate 
through the fast loop to directly inject them back 
into the plasma

• Do minimal isotope balancing in this loop to 
maintain ~50:50 D:T

• Protium build up is usually the limiting factor



Speeding up processing times
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• Some of the technologies discussed earlier 
can be utilized here:

• Palladium diffusers, metal foil pumps – remove 
hydrogen isotopes

• Cryo distillation columns, or TCAP can be used to 
rebalance – the more of this you need to do the 
slower your processing time!



How we explore those

• We can explore these with inventory models

• These gives us an overview of the system to understand architecture, efficiency and processing time 
effects on key high level parameters

• They use the function 𝑑𝐼𝑖

𝑑𝑡
= σ𝑗≠𝑖

𝐼𝑗

τ𝑗 𝑖

− 1 + ε𝑖
𝐼𝑖

τ𝑖
− λ𝐼𝑖 + 𝑆𝑖 

• Ii — Tritium inventory in component i

• τi — Residence time in component i

• εi — Non-radioactive loss fraction in component i

• λ — Tritium decay constant

• Si — Source term (e.g., tritium produced in blanket)

• (Ij / τj)i — Flow of tritium from component j to component i
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How we explore those

• We can use this model to explore 
parameters such as required startup 
inventory for different 
residence/processing times for different 
components or for higher level parameters 
like TBR requirements, or effect of fuelling 
efficiency

• We can see in this outputs based on an 
architecture similar to Meschini et al. 
Modeling and analysis of the tritium fuel 
cycle for ARC- and STEP-class D-T fusion 
power plants.
Nuclear Fusion, Vol. 63, 126005 (2023).
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How we explore those
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• We can use this model to explore 
parameters such as required startup 
inventory for different 
residence/processing times for different 
components or for higher level parameters 
like TBR requirements, or effect of fuelling 
efficiency

• We can see in this outputs based on an 
architecture similar to Meschini et al. 
Modeling and analysis of the tritium fuel 
cycle for ARC- and STEP-class D-T fusion 
power plants.
Nuclear Fusion, Vol. 63, 126005 (2023).



Beyond inventory models

• Inventory models are just the start!

• Closer to realization -> process engineering

• Models to understand the full flow in and out of all components

• Greater detail to understand off normal events and scheduled and unscheduled downtime

• Models must better match real world values – building components to validate these models is the 
only way to do this

• We need to better understand unknowns, e.g.:

• How much protium build-up will there be – directly affects how much we can recycle fast in DIR

• In long pulse conditions – what will be retained in plasma-facing material
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Tritium Accountancy Systems

• Tritium accountancy is key for two main reasons:

o Operation – tritium accountancy allows us to understand where are fuel is, how efficiently our systems are working 
and that we are getting the fuel we need where we need it

o Regulation – for licensing, safety and compliance as tritium is a controlled substance

• Current status:

• Mass balance audits that are performed over days and are not real time

• And usually requires modelling to correct for any decay

• Where we need to be

• Real-time inventory tracking, with minimal uncertainty

• Need localized accountancy and digital integration with plant monitoring and control

o ONE SLIDE DOES NOT DO THE IMPORTANCE OF THIS JUSTICE!!
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Who works on the fuel 
cycle?
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What disciplines make up the fuel cycle

• This is an area with a variety of backgrounds

• Chemical Engineers

• Isotope separation (e.g., cryodistillation, TCAP), Purification systems, catalytic reactors, flow control

• Materials Scientists

• Permeation barriers, hydrides, getter materials, Compatibility with liquid metals, irradiation effects

• Vacuum Engineers

• Cryopumps, turbomolecular systems, conductance optimization, Divertor and exhaust system design

• Plasma Physicists

• Burn fraction modeling, fuelling dynamics, Plasma-surface interaction and exhaust behavior
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What disciplines make up the fuel cycle

• This is an area with a variety of backgrounds

• Control System Engineers, 

• Real-time tritium monitoring and automation

• Radiation Chemists

• Polymer degradation, radiolysis, tritiated compound behavior, Organic contamination and mitigation strategies

• Health Physicists / Safety Specialists

• Tritium containment and release modelling, Dose assessment, safety cases, environmental protection

110© 2025 Tokamak Energy



Finale! 
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Key Takeaways

• The fuel cycle looks to purify deuterium and tritium, and get rid of waste exhaust with minimal losses

• Tritium is scarce, so we must be constantly making more in the fusion device

• Hydrogen isotopes mainly behave similarly but the radioactive nature of tritium means it must be 
carefully controlled, and additional limits must be placed on it

• There are many technologies that make up fuel cycle system, and they use different properties of 
hydrogen isotopes to manipulate the compositions through different systems

• The challenges of tritium and the fuel cycle are plentiful but there is a variety of people working on it 
(hopefully including some of you!)
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THANK YOU AND ANY QUESTIONS?

This is what a 100 million ˚C fusion plasma looks like in 
ST40

CONTACT US:

EMRE YILDIRIM

emre.yildirim@tokamakenergy.com

www.tokamakenergy.com 
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