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My path through plasma physics began with SULI!

1995 – 2013
Grew up in 
Oklahoma, Texas, 
Louisiana & Ohio

2013 – 2017 
Undergrad at ‘Bama

Studied physics & 
math

2017 – 2018 
Fulbright scholar at 
the Max Planck 
Institute for Plasma 
Physics

2018 – 2024 
PhD student in 
Plasma Physics at 
Princeton University

2024 – now 
Scientist at CFS 
working on fast ions 
and burning plasmas 
in SPARC and ARC

Summer 2016
SULI student at DIII-D!
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ARC
EARLY 2030s

SPARC

UNDER CONSTRUCTION 

Grounded in 
established 

tokamak physics

Magnet tech
COMPLETED

CFS will advance fusion energy with concrete milestones

Copyright Commonwealth Fusion Systems
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What is a vector field?

• Scalar field: has a magnitude at each 
point in space

Example: Temperature

• Vector field: has a magnitude and 
direction at each point in space

Example: Wind Velocity
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Right-hand rule

• When taking a cross product, always remember the right-hand rule!
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Basics of magnetic confinement: the Lorentz force

• Motion of charged particles in electromagnetic fields is defined by the 
Lorentz force:

In an electric field: force 
is parallel to the field

In a magnetic field: force is 
perpendicular to the field
(and the particle velocity!)
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What do we know about the Lorentz force?

• Simplest case:

• Straight, uniform 𝐵

• 𝐸 = 0
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Effect on the perpendicular velocity

• Take the time derivative of the Lorentz force…
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Effect on the perpendicular velocity

• Take the time derivative of the Lorentz force…

and use right-hand rule twice to find the direction…

 

(into page)
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Effect on the perpendicular velocity

• Take the time derivative of the Lorentz force…

and use right-hand rule twice to find the direction…

 

and we get:

(into page)
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It’s just a simple harmonic oscillator!

• So: the particle is rotating around the magnetic field with frequency ω𝑐!

• Direction of rotation depends on charge 𝑞

• Radius of gyration:
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Guiding center approximation

• Can separate two parts of the motion:

• Straight motion along 𝐵

• Rotation around 𝐵 (“gyroorbit”)

• Average over the orbit to get “guiding center motion”
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Guiding center approximation: limitations

Q: What happens if 𝐵 isn’t straight or uniform?
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Guiding center approximation: limitations

Q: What happens if 𝐵 isn’t straight or uniform?

A: We can still use the guiding center approximation if a few conditions are 
met:
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Is this approximation valid in SPARC?

• Assume 𝑣⊥= 𝑣∥

𝐵 ≈ 12 T

𝑇 ≈ 20 keV

Hydrogen ion Electron

𝑓 =
𝜔𝑐

2𝜋
= 182 MHz

𝜌 = 1.2 mm

𝑓 = 336 GHz
𝜌 = 28 μm
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Particle drifts

• We never really have a perfectly straight, uniform magnetic field with zero 
other forces

• Add small perturbations, get drifts: 𝑣⊥ = 𝜔𝑐𝜌 + 𝑣𝐷 (𝑣𝐷 ≪ 𝜔𝑐𝜌)
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Particle drifts: arbitrary constant force

Q: What happens when you add an arbitrary, constant force to the picture?
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Particle drifts: arbitrary constant force

Q: What happens when you add an arbitrary, constant force to the picture?

A: If Ԧ𝐹 ∥ 𝐵, the equations of motion can be decoupled!
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Particle drifts: arbitrary constant force

Q: What happens when you add an arbitrary, constant force to the picture?

A: If Ԧ𝐹 ∥ 𝐵, the equations of motion can be decoupled!

But what if Ԧ𝐹 ⊥ 𝐵?
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Particle drifts: arbitrary constant force

• Zeroth order: helical orbit with frequency 𝜔𝑐  and radius ρ

• Bottom of orbit: 𝐹𝐶 = 𝑞𝑣⊥𝐵 + 𝐹

• Top of orbit:        𝐹𝐶 = 𝑞𝑣⊥𝐵 − 𝐹

• 𝜌 ∝ 𝐹𝐶
−1

• So: the orbit alternatively compresses and expands, leading to a drift!
• Opposite directions for ions and electrons
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Particle drifts: arbitrary constant force

• We now have a different differential equation: 𝑚
𝑑𝑣

𝑑𝑡
= 𝑞 Ԧ𝑣 × 𝐵 + Ԧ𝐹
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Particle drifts: arbitrary constant force

• We now have a different differential equation: 𝑚
𝑑𝑣

𝑑𝑡
= 𝑞 Ԧ𝑣 × 𝐵 + Ԧ𝐹

• Let 𝑣 =  𝑣∥ +𝑣𝑔𝑦𝑟𝑜 +  𝑣𝑑𝑟𝑖𝑓𝑡, assume that 𝑣𝑑𝑟𝑖𝑓𝑡 is small and constant
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Particle drifts: arbitrary constant force

• We now have a different differential equation: 𝑚
𝑑𝑣
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Particle drifts: arbitrary constant force

• We now have a different differential equation: 𝑚
𝑑𝑣

𝑑𝑡
= 𝑞 Ԧ𝑣 × 𝐵 + Ԧ𝐹

• Let 𝑣 =  𝑣∥ +𝑣𝑔𝑦𝑟𝑜 +  𝑣𝑑𝑟𝑖𝑓𝑡, assume that 𝑣𝑑𝑟𝑖𝑓𝑡 is small and constant

• We found earlier that, for Ԧ𝐹 ⊥ 𝐵, we can write it as Ԧ𝐹 = −
Ԧ𝐹×𝐵 ×𝐵

𝐵2
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What happens when the field isn’t straight?

• You could confine a plasma in an infinitely long magnetic field, but we can’t 
build that!

• To confine along 𝐵, need a toroidal field

• Now we’ve got two orbital motions:
• Particle around the guiding center

• Guiding center around the center of the torus

electronsPositive ions
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“Force” associated with magnetic field curvature

• The guiding center frame rotates with the guiding center as it circles the 
torus

• In this rotating reference frame, the particle experiences a centrifugal force
• This force isn’t “real”; in an inertial reference frame, it disappears
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Curvature drift

• The centrifugal force is Ԧ𝐹 =
𝑚𝑣∥

2

𝑅𝐶
Ƹ𝑟 

• This gives us a drift velocity of:

• Is 𝑣𝐷 ≪ 𝜔𝑐𝜌?
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Curvature drift in SPARC

• Assume 𝑣⊥= 𝑣∥= 𝐸/𝑚

• Hydrogen ion or electron in SPARC: 
 

|𝑣𝐷| =
2𝐸∥

𝑞𝐵𝑅𝐶
=

20 𝑘𝑒𝑉

1.6 × 10−19 C ∗ 12 T ∗ (1.85 m)
= 900 m/s

• 𝜔𝑐𝜌 = 1.4 × 106 m/s (hydrogen ion) or 5.9 × 107 m/s (electron)
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Curvature drift: consequences

We can see two important features of the curvature drift:

1. It’s perpendicular to both 𝐵 and R, meaning that, in a toroidal field, it 
points in the vertical direction.

2. It depends on charge 𝑞, meaning it points in different directions for 
electrons and ions.
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Curvature drift: consequences

Positive and negative charges separate, creating a vertical electric field!

Ion 
drift

Electron
drift

E

+
++

-
-

-

+

-

Btoroidal

z

ɸ
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Field gradient

• How do we make a toroidal magnetic field?

• Example shown below: loops of current around plasma

• They’re closer together on the inside than the outside:

• 𝐵 is neither straight nor uniform!
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Gradient drift

• A difference in 𝐵 creates a drift too!

• Why? 𝜌 ∝ 𝐵−1

• Imagine we have two magnetic fields, 𝐵1 >  𝐵2

• Drift direction: +𝐵 × ∇𝐵 for ions, −𝐵 × ∇𝐵 for electrons
                     

(into page)
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Gradient drift in a toroidal field

• 𝐵𝑖𝑛 > 𝐵𝑜𝑢𝑡: ∇𝐵 is in the inward (− Ƹ𝑟) direction

• Ԧ𝑣𝐷 is in the 𝐵 × ∇𝐵 direction, which is the same as Ƹ𝑟 × 𝐵

• ∇𝐵 and curvature drift are additive

• The ions drift in the Ƹ𝑟 × 𝐵 direction, the electrons in − Ƹ𝑟 × 𝐵 

• Therefore, the electric field induced points in − Ƹ𝑟 × 𝐵
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Vertical electric field

• Now we have an electric force on the particles, which leads to more drifts!

• Same direction for ions and electrons!

• 𝐸 points in the direction − Ƹ𝑟 × 𝐵

• Ԧ𝑣𝐷 points in the direction −( Ƹ𝑟 × 𝐵) × 𝐵 = Ƹ𝑟

• Ions and electrons want to move outwards!!
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How can we save our toroidal plasma??

• The honey wand on the right is our toroidal plasma

• Instead of a ∇𝐵 and curvature drift, we have
gravity pulling the honey (plasma) down
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How can we save our toroidal plasma??

• The honey wand on the right is our toroidal plasma

• Instead of a ∇𝐵 and curvature drift, we have
gravity pulling the honey (plasma) down
 

   Q: How do you keep the honey on the wand?
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How can we save our toroidal plasma??

• The honey wand on the right is our toroidal plasma

• Instead of a ∇𝐵 and curvature drift, we have
gravity pulling the honey (plasma) down
 

   Q: How do you keep the honey on the wand?

   A: You rotate it!
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Plasmas have “good” and “bad” curvature

• On the inside, the drift is “good”: it pulls the plasma in towards its center

• On the outside, it’s “bad”, pulling the plasma outward

• If we twist the magnetic field, the particles will pass through regions of good 
and bad curvature, and the drifts will average out!
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Adding a twist to the field

• 𝐵 = 𝐵𝑡𝑜𝑟𝑜𝑖𝑑𝑎𝑙 + 𝐵𝑝𝑜𝑙𝑜𝑖𝑑𝑎𝑙

• We can describe a field line by “safety factor”

• If 𝑞 is irrational, then a field line traces out a 
surface

• These are known as “flux surfaces” because
𝑞 is determined by enclosed magnetic flux Ψ
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How do we twist this field?

Two popular ways of creating a helical magnetic field:

1. Tokamak: Symmetric, flat magnetic field coils create 𝐵𝑡𝑜𝑟; a large current 
in the plasma creates 𝐵𝑝𝑜𝑙

2. Stellarator: Both 𝐵𝑡𝑜𝑟  and 𝐵𝑝𝑜𝑙  are created by twisted magnetic field coils
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A new problem?

• Now that the field lines are twisted, 𝐵 isn’t constant along each line!

• Magnetic field strength along a field line in an ideal tokamak looks like:

• We know what happens when we have ∇𝐵 ⊥ 𝐵, but what happens when 
∇𝐵 ∥ 𝐵?
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Adiabatic invariants

• From classical mechanics, we know that when a particle performs periodic 
motion in a coordinate 𝑞, it has an action defined as

where 𝑝𝑞 is the generalized momentum associated with q

• For small perturbations of the periodic motion, the action is conserved

• Here, 𝑞 = 𝜃, 𝑝𝜃 = 𝑚𝑣𝜃𝑟
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The first adiabatic invariant

• The first adiabatic invariant is thus 
𝐸⊥

𝐵
• This is conserved if the guiding center approximation holds!

• What does this mean?
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Combine the adiabatic invariant with conservation of energy

• As we move along the field line, 𝐵 increases, and so does 𝐸⊥

• But the total energy of the particle is conserved!
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Combine the adiabatic invariant with conservation of energy

• As we move along the field line, 𝐵 increases, and so does 𝐸⊥

• But the total energy of the particle is conserved!

   Q: Where is the energy coming from?
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Combine the adiabatic invariant with conservation of energy

• As we move along the field line, 𝐵 increases, and so does 𝐸⊥

• But the total energy of the particle is conserved!

   Q: Where is the energy coming from?

   A: The parallel energy!
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Combine the adiabatic invariant with conservation of energy

• As we move along the field line, 𝐵 increases, and so does 𝐸⊥

• But the total energy of the particle is conserved!

   Q: Where is the energy coming from?

   A: The parallel energy!

• If 𝐵 increases enough, all the parallel energy will be converted into 
perpendicular energy

• What happens then?
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Analogy: consider a ball trapped in a well

• As the ball rolls up the well, 𝐸𝑘𝑖𝑛 
gets converted to 𝑈𝑔𝑟𝑎𝑣

• If the well is too deep, it will stop 
and roll back down!

• As the particle follows the field 
line, 𝐸∥ gets converted to 𝐸⊥ 

• If the “magnetic well” is too deep, 
it will stop and reverse direction!



6/3/2025 52Commonwealth Fusion Systems  •  SULI Intro Course, June 3, 2025

Mirrors and bananas

• This effect is called a “magnetic mirror,” because the particles are reflected

• In tokamaks, this leads to what we call “banana orbits” because they look 
like bananas in a poloidal cross section
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Single particle orbits in ideal tokamaks

• In ideal tokamaks, there are two types of collisionless particle orbits: 
“passing” and “trapped” (aka banana)

• Both drift away from flux surfaces, but thanks to axisymmetry, they always 
end up back where they started
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What does this actually look like?

Video credit: David Kulla, Max Planck Institute for Plasma Physics
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Single particle orbits in stellarators

• Stellarators are more complicated: lots of different orbit types, and the drift 
orbits don’t necessarily close on themselves

• What does this mean?

• Stellarators don’t inherently confine collisionless particle orbits

• Need optimization to fix this!
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Real tokamaks

• Real life tokamaks aren’t perfectly axisymmetric!

• Why not?

• Finite number of coils leads to “ripples” in 𝐵… and coils can be misaligned!

• This means that tokamaks can lose particles if:
• Their banana orbits resonate badly with field ripple

• Their drift orbits are big enough to take them out of the plasma
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When does this matter?

• We’ve been assuming that we can treat the particles in the plasma as single 
particles interacting with 𝐵

• In reality, the particles also interact with each other!

• We still need a twisted field

• But for most particles:
• drifts away from flux surfaces are small

• trapped particles are quickly de-trapped by collisions

• The exception: fast ions
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An introduction to fast ion physics

• Hotter/faster particles collide less often

• Curvature and ∇𝐵 drifts are proportional to kinetic energy

• So if you have a small population of very hot particles in a plasma, they will:

1. Travel far away from their original flux surfaces

2. Stay in one orbit type (trapped/passing) for a long time

3. Primarily interact with the magnetic field, not the other particles
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Where do we get fast ions?

• DT fusion produces 3.5 MeV alpha particles (helium ions), which are 
hundreds of times more energetic than the main plasma

• Heating systems like neutral beam injection (NBI) and ion cyclotron 
resonance heating (ICRH) can create ions with 100’s to 1000’s of keV
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The importance of fast ion confinement

• Confining fast ions (whether from fusion, NBI, or ICRH) is how a fusion device 
heats itself!

• If you lose them, they hit the wall and start melting things…

• Can use orbit following codes to simulate what fast ions do in your plasma
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Conclusions

• In a straight, uniform magnetic field, charged particles follow helical paths 
around the field lines; this is the basic premise of magnetic confinement

• Stronger magnetic field means smaller orbits, better confinement

• When you bend the magnetic field or add other forces/fields, particle orbits 
can drift across field lines

• To compensate, you need a toroidal and a poloidal field

• But twisting the field causes particles, especially energetic, collisionless ones 
(“fast ions”), to get “trapped”

• Confinement of fast ions is an important area of research, especially in 
stellarators, but also in tokamaks
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