Single Particle Motion SULI Introductory Course 2025 Dr. Alex LeViness Burning Plasma & Fast Ion Physicist

Commonwealth Fusion Systems

My path through plasma physics began with SULI!

1995 - 2013

2013 - 2017

2018 - 2024

2024 – now

Grew up in Oklahoma, Texas, Louisiana & Ohio Undergrad at 'Bama Studied physics & math Fulbright scholar at the Max Planck Institute for Plasma Physics

2017 - 2018

PhD student in Plasma Physics at Princeton University Scientist at CFS working on fast ions and burning plasmas in SPARC and ARC

What is a vector field?

 Scalar field: has a magnitude at each point in space

Example: Temperature

 Vector field: has a magnitude and direction at each point in space

Example: Wind Velocity

Right-hand rule

• When taking a *cross product*, always remember the right-hand rule!

Basics of magnetic confinement: the Lorentz force

$$ec{F} = q(ec{v} imes ec{B} + ec{E})$$

In an electric field: force is **parallel** to the field

What do we know about the Lorentz force?

- Simplest case:
 - Straight, uniform \vec{B}
 - $\vec{E} = 0$

Effect on the perpendicular velocity

• Take the time derivative of the Lorentz force...

$$rac{d^2ec v}{dt^2} = rac{d^2ec v_\perp}{dt^2} = rac{q}{m}igg(rac{dec v}{dt} imesec Bigg) = igg(rac{q}{m}igg)^2igg(igg(ec v imesec Bigg) imesec Bigg)$$

Effect on the perpendicular velocity

Take the time derivative of the Lorentz force...

$$rac{d^2ec v}{dt^2} = rac{d^2ec v_\perp}{dt^2} = rac{q}{m}igg(rac{dec v}{dt} imesec Bigg) = igg(rac{q}{m}igg)^2igg(igg(ec v imesec Bigg) imesec Bigg)$$

and use right-hand rule twice to find the direction...

Effect on the perpendicular velocity

• Take the time derivative of the Lorentz force...

$$rac{d^2ec v}{dt^2} = rac{d^2ec v_\perp}{dt^2} = rac{q}{m}igg(rac{dec v}{dt} imesec Bigg) = igg(rac{q}{m}igg)^2igg(igg(ec v imesec Bigg) imesec Bigg)$$

and use right-hand rule twice to find the direction...

$$ec{v}_{\perp}$$
 $ec{B}$ (into page)
 $ec{v} imes ec{B}$ $(ec{v} imes ec{B}) imes ec{B} = -B^2 ec{v}_{\perp}$

It's just a simple harmonic oscillator!

$$rac{d^2ec{v}_{\perp}}{dt^2} = -\omega_c^2ec{v}_{\perp} \qquad \qquad \omega_c = rac{qB}{m}$$

• So: the particle is rotating around the magnetic field with frequency ω_c !

$$rac{d|v_{\perp}|}{dt}=0,\;rac{dec v_{\perp}}{dt}
eq 0$$

- Direction of rotation depends on charge q
- Radius of gyration:

$$ho = rac{v_\perp}{\omega_c} = rac{m v_\perp}{|q|B}$$

Guiding center approximation

- Can separate two parts of the motion:
 - Straight motion along \vec{B}
 - Rotation around \vec{B} ("gyroorbit")
- Average over the orbit to get "guiding center motion"

Guiding center approximation: limitations

Q: What happens if \vec{B} isn't straight or uniform?

Guiding center approximation: limitations

Q: What happens if \vec{B} isn't straight or uniform?

A: We can *still* use the guiding center approximation if a few conditions are met:

Is this approximation valid in SPARC?

 $B \approx 12 \text{ T}$

 $T \approx 20 \text{ keV}$

• Assume $v_{\perp} = v_{\parallel}$

Hydrogen ion $f = \frac{\omega_c}{2\pi} = 182 \text{ MHz}$ $\rho = 1.2 \text{ mm}$

Electron ho $f = 336 \, \mathrm{GHz}$ $ho = 28 \, \mathrm{\mu m}$

Particle drifts

- We never really have a perfectly straight, uniform magnetic field with zero other forces
- Add small perturbations, get *drifts*: $v_{\perp} = \omega_c \rho + v_D \ (v_D \ll \omega_c \rho)$

Q: What happens when you add an arbitrary, constant force to the picture?

Q: What happens when you add an arbitrary, constant force to the picture? A: If $\vec{F} \parallel \vec{B}$, the equations of motion can be decoupled!

$$rac{dv_\parallel}{dt} = rac{F}{m}, \; rac{dec v_\perp}{dt} = rac{q}{m} \Big(ec v imes ec B\Big)$$

Q: What happens when you add an arbitrary, constant force to the picture? A: If $\vec{F} \parallel \vec{B}$, the equations of motion can be decoupled!

$$rac{dv_\parallel}{dt} = rac{F}{m}, \; rac{dec v_\perp}{dt} = rac{q}{m} ig(ec v imes ec Big)$$

But what if $\vec{F} \perp \vec{B}$?

• Zeroth order: helical orbit with frequency ω_c and radius ρ

- Bottom of orbit: $F_C = q v_{\perp} B + F$
- Top of orbit: $F_C = q v_{\perp} B F$
- $\rho \propto F_C^{-1}$
- So: the orbit alternatively compresses and expands, leading to a drift!
 - Opposite directions for ions and electrons

• We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$mrac{dec{v}}{dt}=mrac{dec{v}_g}{dt}+mrac{dec{v}_D}{dt}=q\left(ec{v}_g imesec{B}+ec{v}_D imesec{B}
ight)+ec{F}$$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$mrac{dec{v}}{dt}=mrac{dec{v}_g}{dt}+mrac{dec{v}_D}{dt}=q\left(ec{v}_q imesec{B}+ec{v}_D imesec{B}
ight)+ec{F}$$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$mrac{dec{v}}{dt} = mrac{dec{v}_g}{dt} + mrac{dec{v}_D}{dt} = q\left(ec{v}_g imes ec{B} + ec{v}_D imes ec{B}
ight) + ec{F}$$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$egin{aligned} & mrac{dec{v}_g}{dt} = mrac{dec{v}_g}{dt} + mrac{dec{v}_D}{dt} = q\left(ec{v}_g imesec{B} + ec{v}_D imesec{B}
ight) + ec{F} \ & ec{F} = -q(ec{v}_D imesec{B}) \end{aligned}$$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$egin{aligned} & mrac{dec{v}_g}{dt} = mrac{dec{v}_g}{dt} + mrac{dec{v}_D}{dt} = q\left(ec{v}_g imesec{B} + ec{v}_D imesec{B}
ight) + ec{F} \ & ec{F} = -q(ec{v}_D imesec{B}) \ & ec{ec{F}} = -q(ec{v}_D imesec{B}) \ & ec{ec{F}} = ec{ec{B}}
ight) imes ec{ec{B}} \end{aligned}$$

• We found earlier that, for $\vec{F} \perp \vec{B}$, we can write it as $\vec{F} = -\frac{(F \times B) \times B}{R^2}$

- We now have a different differential equation: $m \frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) + \vec{F}$
- Let $v = v_{\parallel} + v_{gyro} + v_{drift}$, assume that v_{drift} is small and constant

$$egin{aligned} & mrac{dec{v}_g}{dt} = mrac{dec{v}_g}{dt} + mrac{dec{v}_D}{dt} = q\left(ec{v}_g imesec{B} + ec{v}_D imesec{B}
ight) + ec{F} \ & ec{F} = -qig(ec{v}_D imesec{B}ig) \ & ec{B}ig) \ & ec{eta} = -qig(ec{v}_D imesec{B}ig) \ & ec{B}ig) \ & ec{B$$

• We found earlier that, for $\vec{F} \perp \vec{B}$, we can write it as $\vec{F} = -\frac{(F \times B) \times B}{B^2}$

$$ec{v}_D = rac{ec{F} imesec{B}}{qB^2}$$

What happens when the field isn't straight?

- You could confine a plasma in an infinitely long magnetic field, but we can't build that!
- To confine along \vec{B} , need a *toroidal* field
- Now we've got two orbital motions:
 - Particle around the guiding center
 - Guiding center around the center of the torus

"Force" associated with magnetic field curvature

- The guiding center frame rotates with the guiding center as it circles the torus
- In this rotating reference frame, the particle experiences a *centrifugal* force
 - This force isn't "real"; in an inertial reference frame, it disappears

Curvature drift

- The centrifugal force is $\vec{F} = \frac{mv_{\parallel}^2}{R_C}\hat{r}$
- This gives us a drift velocity of:

$$ec{v}_D = m v_\parallel^2 rac{ec{R}_C imes ec{B}}{q B^2 R_C^2} \, .$$

• Is $v_D \ll \omega_c \rho$?

Curvature drift in SPARC

- Assume $v_{\perp} = v_{\parallel} = \sqrt{E/m}$
- Hydrogen ion or electron in SPARC:

$$|v_D| = \frac{2E_{\parallel}}{qBR_C} = \frac{20 \ keV}{(1.6 \times 10^{-19} \ \text{C}) * (12 \ \text{T}) * (1.85 \ \text{m})} = 900 \ \text{m/s}$$

• $\omega_c \rho = 1.4 \times 10^6$ m/s (hydrogen ion) or 5.9×10^7 m/s (electron)

Curvature drift: consequences

$$ec{v}_D = m v_\parallel^2 rac{ec{R}_C imes ec{B}}{q B^2 R_C^2}$$
 .

We can see two important features of the curvature drift:

- 1. It's perpendicular to both \vec{B} and \vec{R} , meaning that, in a toroidal field, it points in the *vertical* direction.
- 2. It depends on charge q, meaning it points in *different* directions for electrons and ions.

Curvature drift: consequences

Positive and negative charges separate, creating a vertical electric field!

Field gradient

- How do we make a toroidal magnetic field?
- Example shown below: loops of current around plasma
- They're closer together on the inside than the outside:

$B_{in} > B_{out}$

• \vec{B} is neither straight nor uniform!

Gradient drift

- A difference in *B* creates a drift too!
- Why? $\rho \propto B^{-1}$
- Imagine we have two magnetic fields, $B_1 > B_2$

• Drift direction: $+\vec{B} \times \nabla B$ for ions, $-\vec{B} \times \nabla B$ for electrons

Gradient drift in a toroidal field

- $B_{in} > B_{out}$: ∇B is in the inward $(-\hat{r})$ direction
- \vec{v}_D is in the $\vec{B} \times \nabla B$ direction, which is the same as $\hat{r} \times \vec{B}$
- ∇B and curvature drift are *additive*
- The ions drift in the $\hat{r} \times \vec{B}$ direction, the electrons in $-\hat{r} \times \vec{B}$
- Therefore, the electric field induced points in $-\hat{r} \times \vec{B}$

Vertical electric field

- Now we have an electric force on the particles, which leads to more drifts!

$$ec{F}=qec{E} \qquad ec{v}_D=rac{qec{E} imesec{B}}{qB^2}=rac{ec{E} imesec{B}}{B^2}$$

- Same direction for ions and electrons!
- \vec{E} points in the direction $-\hat{r} \times \vec{B}$
- \vec{v}_D points in the direction $-(\hat{r} \times \vec{B}) \times \vec{B} = \hat{r}$
- Ions and electrons want to move *outwards*!!

How can we save our toroidal plasma??

- The honey wand on the right is our toroidal plasma
- Instead of a ∇B and curvature drift, we have gravity pulling the honey (plasma) down

How can we save our toroidal plasma??

- The honey wand on the right is our toroidal plasma
- Instead of a ∇B and curvature drift, we have gravity pulling the honey (plasma) down

Q: How do you keep the honey on the wand?

How can we save our toroidal plasma??

- The honey wand on the right is our toroidal plasma
- Instead of a ∇B and curvature drift, we have gravity pulling the honey (plasma) down
 - Q: How do you keep the honey on the wand?
 - A: You rotate it!

Plasmas have "good" and "bad" curvature

- On the inside, the drift is "good": it pulls the plasma in towards its center
- On the outside, it's "bad", pulling the plasma outward
- If we twist the magnetic field, the particles will pass through regions of good and bad curvature, and the drifts will average out!

Adding a twist to the field

- $\vec{B} = B_{toroidal} + B_{poloidal}$
- We can describe a field line by "safety factor"

 $q = rac{toroidal\ transits}{poloidal\ transits}$

- If q is *irrational*, then a field line traces out a surface
- These are known as "flux surfaces" because q is determined by enclosed magnetic flux Ψ

How do we twist this field?

Two popular ways of creating a helical magnetic field:

- **1.** Tokamak: Symmetric, flat magnetic field coils create B_{tor} ; a large current in the plasma creates B_{pol}
- 2. Stellarator: Both B_{tor} and B_{pol} are created by twisted magnetic field coils

A new problem?

- Now that the field lines are twisted, *B* isn't constant along each line!
- Magnetic field strength along a field line in an ideal tokamak looks like:

• We know what happens when we have $\nabla B \perp \vec{B}$, but what happens when $\nabla B \parallel \vec{B}$?

Adiabatic invariants

 From classical mechanics, we know that when a particle performs periodic motion in a coordinate q, it has an action defined as

where
$$p_q$$
 is the generalized momentum associated with q

• For *small* perturbations of the periodic motion, the action is conserved

 $\oint p_q dq$

• Here,
$$q= heta$$
 , $p_{ heta}=mv_{ heta}r$

The first adiabatic invariant

$$igstarrow p_ heta d heta = \int_0^{2\pi} m v_ heta
ho d heta = 2\pi m v_ot
ho = 2\pi m v_ot$$

• The first adiabatic invariant is thus $\frac{E_{\perp}}{B}$

- This is conserved *if* the guiding center approximation holds!
- What does this mean?

- As we move along the field line, B increases, and so does E_{\perp}
- *But* the total energy of the particle is conserved!

- As we move along the field line, B increases, and so does E_{\perp}
- *But* the total energy of the particle is conserved!

Q: Where is the energy coming from?

- As we move along the field line, B increases, and so does E_{\perp}
- *But* the total energy of the particle is conserved!

Q: Where is the energy coming from?

A: The parallel energy!

- As we move along the field line, B increases, and so does E_{\perp}
- *But* the total energy of the particle is conserved!

Q: Where is the energy coming from?

A: The parallel energy!

• If *B* increases enough, *all* the parallel energy will be converted into perpendicular energy

$$E=E_{\parallel,0}+E_{\perp,0}=E_{\perp,f}$$

What happens then?

Analogy: consider a ball trapped in a well

- As the ball rolls up the well, E_{kin} gets converted to U_{grav}
- If the well is too deep, it will stop and roll back down!

- As the particle follows the field line, E_{\parallel} gets converted to E_{\perp}
- If the "magnetic well" is too deep, it will stop and reverse direction!

Mirrors and bananas

- This effect is called a "magnetic mirror," because the particles are reflected
- In tokamaks, this leads to what we call "banana orbits" because they look like bananas in a poloidal cross section

Single particle orbits in ideal tokamaks

- In ideal tokamaks, there are two types of collisionless particle orbits: "passing" and "trapped" (aka banana)
- Both drift away from flux surfaces, but thanks to axisymmetry, they always end up back where they started

What does this actually look like?

Video credit: David Kulla, Max Planck Institute for Plasma Physics

Single particle orbits in stellarators

- Stellarators are more complicated: lots of different orbit types, and the drift orbits don't necessarily close on themselves
- What does this mean?
- Stellarators don't *inherently* confine collisionless particle orbits
- Need optimization to fix this!

Real tokamaks

- Real life tokamaks *aren't* perfectly axisymmetric!
- Why not?
- Finite number of coils leads to "ripples" in *B*... and coils can be misaligned!
- This means that tokamaks can lose particles if:
 - Their banana orbits resonate badly with field ripple
 - Their drift orbits are big enough to take them out of the plasma

When does this matter?

- We've been assuming that we can treat the particles in the plasma as single particles interacting with \vec{B}
- In reality, the particles also interact with *each other*!
- <u>We still need a twisted field</u>
- But for most particles:
 - drifts away from flux surfaces are small
 - trapped particles are quickly de-trapped by collisions
- The exception: *fast ions*

An introduction to fast ion physics

- Hotter/faster particles collide less often
- Curvature and ∇B drifts are proportional to kinetic energy
- So if you have a small population of very hot particles in a plasma, they will:
- 1. Travel far away from their original flux surfaces
- 2. Stay in one orbit type (trapped/passing) for a long time
- 3. Primarily interact with the magnetic field, *not* the other particles

Where do we get fast ions?

- DT fusion produces 3.5 MeV alpha particles (helium ions), which are hundreds of times more energetic than the main plasma
- Heating systems like *neutral beam injection* (NBI) and *ion cyclotron* resonance heating (ICRH) can create ions with 100's to 1000's of keV

The importance of fast ion confinement

- Confining fast ions (whether from fusion, NBI, or ICRH) is how a fusion device heats itself!
- If you lose them, they hit the wall and start melting things...
- Can use orbit following codes to simulate what fast ions do in your plasma

Conclusions

- In a straight, uniform magnetic field, charged particles follow helical paths around the field lines; this is the basic premise of magnetic confinement
- Stronger magnetic field means smaller orbits, better confinement
- When you bend the magnetic field or add other forces/fields, particle orbits can *drift* across field lines
- To compensate, you need a *toroidal* and a *poloidal* field
- But twisting the field causes particles, especially energetic, collisionless ones ("fast ions"), to get "trapped"
- Confinement of fast ions is an important area of research, especially in stellarators, but also in tokamaks