A (brief) Introduction to Tokamaks

C. Clauser

Plasma Science & Fusion Center Massachusetts Institute of Technology

Presented at:

2025 SULI Introduction to Fusion Energy and Plasma Physics Course June 2nd – 13th, 2025

Acknowledgments:

R. Granetz, MIT R. Sweeney, CFS A. Tinguely, MIT

Studied physics in Argentina Bariloche Atomic Center & Balseiro Institute

Studied physics in Argentina Bariloche Atomic Center & Balseiro Institute Had a visiting scholar appointment at UCSD (at DIII-D)

Studied physics in Argentina Bariloche Atomic Center & Balseiro Institute Huemul Project: The first (but failed) fusion project in the world

C. Clauser – Intro to Tokamaks

Studied physics in Argentina Then moved to Princeton as a postdoc at PPPL PPPL started as a secret lab after the Huemul Project

Studied physics in Argentina Then moved to Princeton as a postdoc at PPPL Then moved to Cambridge MA, as a research scientist at MIT

C. Clauser – Intro to Tokamaks

A (brief) Introduction to Tokamaks

What will we cover?

- Tokamak: particle orbit picture
- Tokamak equilibrium: Grad-Shafranov equation
- How a discharge looks like?
- The future of Tokamaks: towards FPPs
- Challenges: Disruptions

Plasma Can Be Confined by the Gyration Of Charged Particles in a Magnetic Field Magnetic Confinement = Thermal Insulation Perpendicular To Field

Plasma Science

Fusion Center

- At the temperatures involved, ions are moving at over 1,000 km/s
- But, the average time for an ion to fuse, even at these temperatures ~ 25 seconds
- So, the end losses must be eliminated somehow

- At the temperatures involved, ions are moving at over 1,000 km/s
- But, the average time for an ion to fuse, even at these temperatures ~ 25 seconds
- So, the end losses must be eliminated somehow

A toroidal configuration would solve this problem!

However... there are some side effects

- Solution 1: Torus solves the end-loss problem
- Issue 2: In a simple toroidal field, particle drifts lead to charge separation and loss of equilibrium.

However... there are some side effects

- Solution 1: Torus solves the end-loss problem
- Issue 2: In a simple toroidal field, particle drifts lead to charge separation and loss of equilibrium.
 - Solution 2: Add poloidal field (*through a toroidal plasma current*), twist then allows particles to sample regions of inward and outward drift.
 - Issue 3: Hoop stress from unequal magnetic and kinetic pressures.

However... there are some side effects

- Solution 1: Torus solves the end-loss problem
- Issue 2: In a simple toroidal field, particle drifts lead to charge separation and loss of equilibrium.
 - Solution 2: Add poloidal field (*through a toroidal plasma current*), twist then allows particles to sample regions of inward and outward drift.
 - Issue 3: Hoop stress from unequal magnetic and kinetic pressures.
 - Solution 3: Add vertical field, to counteract hoop stress.
 - Magnetic confinement experiments are variations on this theme.

Putting all these required fields together results in a tokamak

- Formulated in the 1950s by Russian scientists First tokamak, T-1, operated in 1958
- Tokamaks confine with an *externally* produced toroidal field and a *plasma current* produced poloidal field
- TOKAMAK is a Russian acronym: "Toroidal Chamber with Magnetic Coils"
- Leading magnetic confinement concept in terms of number of facilities and funding

Plasma Science & Fusion Center

How do tokamaks look like?

NSTX | PPPL

DIII-D | General Atomics

C-Mod | MIT

A useful way to reconstruct a discharge is by obtaining its equilibrium at different times

 $\nabla p = \mathbf{J} \times \mathbf{B} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \quad \nabla \cdot \mathbf{B} = \mathbf{0} \ (\rightarrow \mathbf{B} = \nabla \times \mathbf{A})$

A useful way to reconstruct a discharge is by obtaining its equilibrium at different times

 $\nabla p = \mathbf{J} \times \mathbf{B} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \quad \nabla \cdot \mathbf{B} = \mathbf{0} \ (\rightarrow \mathbf{B} = \nabla \times \mathbf{B})$ **A**)

Some basic properties

- $\mathbf{B} \cdot \nabla p = \mathbf{0}$ Magnetic field lines lie in surface of p=const.
- $\mathbf{J}\cdot\nabla p=\mathbf{0}$ Current density lines also lie in surface of p=const.

A useful way to reconstruct a discharge is by obtaining its equilibrium at different times

 $\nabla p = \mathbf{J} \times \mathbf{B} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \quad \nabla \cdot \mathbf{B} = \mathbf{0} \ (\rightarrow \mathbf{B} = \nabla \times \mathbf{B})$ **A**)

Some basic properties

 $\mathbf{B}\cdot\nabla p=\mathbf{0}$ Magnetic field lines lies in surface of p=const.

 $\mathbf{J}\cdot\nabla p=\mathbf{0}$ Current density lines also lies in surface of p=const.

Assuming axi-symmetry, $\partial_{\phi} \equiv 0$, it is possible to solve for a 'radial' force balance equation (Grad-Shafranov)

$$R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) + \frac{\partial^2 \psi}{\partial Z^2} = -\mu_0 R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi}$$
$$\mathbf{B} = \frac{1}{R} \hat{\phi} \times \nabla \psi + \frac{F}{R} \hat{\phi} \quad F = F(\psi) \quad p = p(\psi)$$
$$(\psi = -RA_{\phi})$$

G-S equation relates poloidal flux function (ψ), pressure (p), and current flux function (F)

Finding the equilibrium consists of solving the G-S equation for ψ (which is also our 'radial' coordinate)

Equilibrium is axisymmetric so, we only show a *poloidal cross-section*

Surfaces of constant ψ are called 'magnetic surfaces'

- magnetic field and current density lie in those surfaces
- pressure and F are constant on magnetic surfaces
- The *separatrix* separates the *confined region* from the *open field line region*

Magnetic sensors and diagnostics allow the reconstruction

- central solenoid (OH1)
 'pre-charges'
- quick change in OH1 current generates a loop voltage
- plasma current is driven
- Thomson Scattering for electron temperature
- TCI for electron density

During a discharge, there is a balance of input and loss of thermal energy

- The **confined region** 'isolates' our hot plasma from the outer world
- However, radial transport still occurs *Microturbulence* dominates radial transport in tokamaks
- Thermal energy flows from the core to the thin scrape-off layer (SOL) and gets lost
- (almost) All the heat loss is conducted to the divertor

Plasma Science & Fusion Center

Plasma Science & Fusion Center

Some key metrics in fusion

"fusion triple product"

 $nT\tau_E \propto R^{1.3}B_T^3$ (> 3 × 10²¹ m⁻³keV s → Breakeven)

fusion power

 $P_{fus} \propto R^3 B_T^4$

Some key metrics in fusion

"fusion triple product"

 $nT\tau_E \propto R^{1.3}B_T^3$ (> 3 × 10²¹ m⁻³keV s → Breakeven)

fusion power

 $P_{fus} \propto R^3 B_T^4$

The has been a lot of progress in tokamak performance over their first decades

Since late '90, the stagnation was mostly due to size & cost (technology), not saturation due to physics

Plasma Science & Fusion Center

ITER is one of the biggest project of humankind

In parallel, progress has continued steady in many areas Theory / simulations microturbulence and transport from fundamental physics Extended MHD models including conducting structures (whole device modeling)

- Data / ML •
 - Tokamaks produce huge amount of data Machine Learning is now almost everywhere in fusion
- Experiments
 - New records in fusion energy (JET: 69 MJ)
 - New records in pulse duration (EAST: 22 mins)
- Technology
 - High-Temperature superconducting magnets

The future of tokamaks... towards fusion pilot plants (FPPs)

Plasma Science & Fusion Center

With all these advancement, private sector started envisioning a faster approach to fusion energy

With all these advancement, private sector started envisioning a faster approach to fusion energy

With all these advancement, private sector started envisioning a faster approach to fusion energy

In 2021, CFS and MIT demonstrated 20 T Magnetic field

With all these advancement, private sector started envisioning a faster approach to fusion energy

Commonwealth

In 2021, CFS and MIT demonstrated 20 T Magnetic field

This created a viable path for compact devices

With all these advancement, private sector started envisioning a faster approach to fusion energy

In 2021, CFS and MIT demonstrated 20 T Magnetic field

SPARCO

This created a viable path for compact devices

CFS (and partners) are also currently planning ARC: a fusion pilot plant

With all these advancement, private sector started envisioning a faster approach to fusion energy

Comparison of ITER, SPARC and ARC

	ITER	SPARC	ARC V2B
B ₀ [T]	5.3	12.2	10.8
lp [MA]	15	8.7	11.2
R0[m]	6.2	1.85	4.25
a [m]	2	0.57	1.17
P _{fusion} [MW]	500	50 – 140	1000
Q	10	2 – 10	50
P _{electric} [MW]			400

* V2B target parameters [J. Hillesheim APS-DPP 24]

SPARC is now under construction

Devens MA Tokamak hall

Magnet factory

Compact and future FPPs will require advance divertor solutions

Another C-Mod Discharge

Another C-Mod Discharge

Disruptions are abrupt discharge termination due to loss of confinement

Could be caused due to

- internal factors (plasma instabilities)
- external factors (failure in a component)

Plasma energy is released in the ms timescale with potential damage to the device

If it helps, let's think in terms of TNT kilograms...

C-Mod: Plasma energy $\lesssim 1$ MJ (~ 0.2 kg TNT) released in < 1-2 ms

SPARC: Plasma energy ~ 100 MJ (~20 kg TNT) released in < 3-10 ms ITER: Plasma energy > 500 MJ (~100 kg TNT) released in < 1 – 100 ms

If it helps, let's think in terms of TNT kilograms...

C-Mod:	SPARC:	ITER:
Plasma energy $\lesssim 1~ extsf{MJ}$	Plasma energy ~ 100 MJ	Plasma energy > 500 MJ
(\sim 0.2 kg TNT)	$(\sim 20 \text{ kg TNT})$	(~ 100 kg TNT)
released in < 1-2 ms	released in < 3-10 ms	released in < 1 – 100 ms

Disruptions lead to large heat and electromagnetic loads on the vessel

If it helps, let's think in terms of TNT kilograms...

C-Mod:	SPARC:	ITER:
Plasma energy $\lesssim 1$ MJ	Plasma energy ~ 100 MJ	Plasma energy > 500 MJ
(\sim 0.2 kg TNT)	$(\sim 20 \text{ kg TNT})$	($\sim \! 100$ kg TNT)
released in < 1-2 ms	released in < 3-10 ms	released in < 1 – 100 ms

Disruptions lead to large heat and electromagnetic loads on the vessel

Disruption physics focuses on

- prediction / avoidance: ML has a strong role here
- **Mitigation:** Massive gas injection or pellet injection to radiate as much energy as possible
- **consequences:** Thermal and electromagnetic loads
 - Vertical displacement events, runaway electrons, thermal and fast particle flux

Summary and final remarks...

So far, we briefly covered...

- what tokamaks are and why the have the shape they have
- how a discharge and the plasma equilibrium look like
- the path towards fusion pilot plants based on the tokamak approach.
- Disruptions in Tokamaks

Many open areas of research (my very limited list):

- Integrated modeling
- MHD, control and disruption physics
- Core and edge Turbulent transport
- Boundary physics and plasma-wall interaction

Reach out at <u>www.psfc.mit.edu</u>!

Thanks!

