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My way in fusion
Studied physics in Argentina

Bariloche Atomic Center & Balseiro Institute
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Studied physics in Argentina
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Had a visiting scholar appointment at UCSD (at DIII-D)

6/5/25 C. Clauser – Intro to Tokamaks 3



My way in fusion
Studied physics in Argentina

Bariloche Atomic Center & Balseiro Institute
Huemul Project: The first (but failed) fusion project in the world
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My way in fusion
Studied physics in Argentina

Then moved to Princeton as a postdoc at PPPL
PPPL started  as a secret lab after the Huemul Project
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My way in fusion
Studied physics in Argentina

Then moved to Princeton as a postdoc at PPPL
Then moved to Cambridge MA, as a research scientist at MIT
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A (brief) Introduction to Tokamaks 

• Tokamak: particle orbit picture

• Tokamak equilibrium: Grad-Shafranov equation

• How a discharge looks like?

• The future of Tokamaks: towards FPPs

• Challenges: Disruptions

What will we cover?

6/5/25 C. Clauser – Intro to Tokamaks 7



Tokamak: particle orbit picture

The quality of the 
magnetic 

insulation 
increases with the 

strength of the 
magnetic field

At B = 10T,  T = 10keV

• e = 0.033 mm

• i =  1.5 mm

• We need a device 
size ~500 - 1,000 x i

– i.e. ~ 1 m

– (Breeding blanket also 
requires about 1 m)

Plasma Can Be Confined by the Gyration Of Charged Particles in a Magnetic Field 
Magnetic Confinement = Thermal Insulation Perpendicular To Field
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Tokamak: particle orbit picture

● At the temperatures involved, 
ions are moving at over 1,000 
km/s

● But, the average time for an ion 
to fuse, even at these 
temperatures  ~ 25 seconds

● So, the end losses must be 
eliminated somehow
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Tokamak: particle orbit picture

● At the temperatures involved, 
ions are moving at over 1,000 
km/s

● But, the average time for an ion 
to fuse, even at these 
temperatures  ~ 25 seconds

● So, the end losses must be 
eliminated somehow

A toroidal configuration 
would solve this problem!

𝐁𝜙 =
𝜇0𝑁𝐼

2𝜋𝑅
 𝜙

𝑅

𝑍

𝜙

𝐵𝜙

𝐼
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Tokamak: particle orbit picture
However… there are some side effects 

● Solution 1: Torus solves the end-loss problem

● Issue 2: In a simple toroidal field, particle drifts lead to charge 
separation and loss of equilibrium.B B

Bt E
𝑣𝐵~𝐁 × ∇𝐁
𝑣𝐸~𝐄 × 𝐁
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Tokamak: particle orbit picture
However… there are some side effects 

● Solution 1: Torus solves the end-loss problem

● Issue 2: In a simple toroidal field, particle drifts lead to charge 
separation and loss of equilibrium.B B

Bt E
𝑣𝐵~𝐁 × ∇𝐁
𝑣𝐸~𝐄 × 𝐁

Bt

Bp

Jt

● Solution 2: Add poloidal field (through a toroidal plasma current), 
twist then allows particles to sample regions of inward and 
outward drift.

● Issue 3: Hoop stress from unequal magnetic and kinetic 
pressures.
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Tokamak: particle orbit picture
However… there are some side effects 

● Solution 1: Torus solves the end-loss problem

● Issue 2: In a simple toroidal field, particle drifts lead to charge 
separation and loss of equilibrium.B B

Bt E
𝑣𝐵~𝐁 × ∇𝐁
𝑣𝐸~𝐄 × 𝐁

Bt

Bp

Jt

Bt

Bp

Jt

Bz

● Solution 2: Add poloidal field (through a toroidal plasma current), 
twist then allows particles to sample regions of inward and 
outward drift.

● Issue 3: Hoop stress from unequal magnetic and kinetic 
pressures.

● Solution 3: Add vertical field, to counteract hoop stress.

● Magnetic confinement experiments are variations on this theme.𝐅 = 𝐉𝒕 × 𝐁𝐳
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Putting all these required fields together 
results in a tokamak

• Formulated in the 1950s by Russian scientists
First tokamak, T-1, operated in 1958

• Tokamaks confine with an externally produced 
toroidal field and a plasma current produced 
poloidal field

• TOKAMAK is a Russian acronym: 
“Toroidal Chamber with Magnetic Coils”

• Leading magnetic confinement 
concept in terms of number 
of facilities and funding
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How do tokamaks look like?
NSTX | PPPL

C-Mod | MIT

DIII-D | General Atomics

6/5/25 C. Clauser – Intro to Tokamaks 15



How does a discharge look like?
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Tokamak equilibrium

𝑅

𝑍

𝜙

𝑋

𝑌

𝑥
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𝛻𝑝 = 𝐉 × 𝐁

A useful way to reconstruct a discharge is by 
obtaining its equilibrium at different times

𝛻 × 𝐁 = 𝜇0𝐉 𝛻 ⋅ 𝐁 = 𝟎 (→ 𝐁 = 𝛻 ×
𝐀) 



Tokamak equilibrium
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𝑍

𝜙
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𝑌

𝑥
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A useful way to reconstruct a discharge is by 
obtaining its equilibrium at different times

𝛻 × 𝐁 = 𝜇0𝐉 𝛻 ⋅ 𝐁 = 𝟎 (→ 𝐁 = 𝛻 ×
𝐀) 

𝐁 ⋅ ∇𝑝 = 𝟎 Magnetic field lines lie in surface of p=const.

𝐉 ⋅ ∇𝑝 = 𝟎 Current density lines also lie in surface of p=const.

Some basic properties



Tokamak equilibrium

𝛻𝑝 = 𝐉 × 𝐁

A useful way to reconstruct a discharge is by 
obtaining its equilibrium at different times

Assuming axi-symmetry, 𝝏𝝓 ≡ 𝟎, it is possible to solve 
for a ‘radial’ force balance equation (Grad-Shafranov)

𝛻 × 𝐁 = 𝜇0𝐉 𝛻 ⋅ 𝐁 = 𝟎 (→ 𝐁 = 𝛻 ×
𝐀) 

𝐁 ⋅ ∇𝑝 = 𝟎 Magnetic field lines lies in surface of p=const.

𝐉 ⋅ ∇𝑝 = 𝟎 Current density lines also lies in surface of p=const.

𝑅

𝑍

𝜙

𝑋

𝑌

𝑥

Some basic properties

𝑅
𝜕

𝜕𝑅

1

𝑅

𝜕𝜓

𝜕𝑅
+

𝜕2𝜓

𝜕𝑍2
= −𝜇0𝑅2

𝑑𝑝

𝑑𝜓
− 𝐹

𝑑𝐹

𝑑𝜓

𝐁 =
1

𝑅
𝜙 × ∇𝜓 + 𝐹

𝑅
 𝜙 𝑝 = 𝑝 𝜓  𝐹 = 𝐹 𝜓  

𝜓 = −𝑅𝐴𝜙  
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Tokamak equilibrium
G-S equation relates poloidal flux function (𝜓),
pressure (p), and current flux function (F)

𝜓𝑚

C-Mod

𝜓𝑠𝑒𝑝

Finding the  equilibrium consists of solving the G-S equation 
for 𝜓 (which is also our ‘radial’ coordinate)  

Equilibrium is axisymmetric so, we only show a 
poloidal cross-section 

Surfaces of constant 𝜓 are called ‘magnetic surfaces’

• magnetic field and current density lie in those surfaces

• pressure and F are constant on magnetic surfaces
• The separatrix  separates the confined region from the 

open field line region 
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X-point

𝜓

vacuum 
vessel



How does a discharge look like?
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How does a discharge look like?
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How does a discharge look like?

• central solenoid (OH1) 
‘pre-charges’

• quick change in OH1 current 
generates a loop voltage

• plasma current is driven

• Thomson Scattering for 
electron temperature

• TCI for electron density

O
H

1 vertical 
field coils

Magnetic sensors and diagnostics allow the reconstruction
Other coils used 
for shaping and 
control
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X-point

separatrix

confined 
region

(hot plasma)

open field line 
region /  

scrape-off 
layer (SOL)

(cold plasma)

divertor

• The confined region ‘isolates’ our hot 
plasma from the outer world

• However, radial transport still occurs
Microturbulence dominates radial 
transport in tokamaks

• Thermal energy flows from the core to 
the thin scrape-off layer (SOL) and 
gets lost 

• (almost) All the heat loss is conducted 
to the divertor 

core

How does a discharge look like?
During a discharge, there is a balance of input and loss of thermal energy



The future of tokamaks… 
towards fusion pilot plants (FPPs)
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𝑛𝑇𝜏𝐸 ∝ 𝑅1.3𝐵𝑇
3 (> 3 × 1021 m−3keV s → Breakeven)    

The future of tokamaks… 
towards fusion pilot plants (FPPs)

Some key metrics in fusion

“fusion triple product”

fusion power

𝑃𝑓𝑢𝑠 ∝ 𝑅3𝐵𝑇
4 
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𝑛𝑇𝜏𝐸 ∝ 𝑅1.3𝐵𝑇
3 (> 3 × 1021 m−3keV s → Breakeven)    

The future of tokamaks… 
towards fusion pilot plants (FPPs)

The has been a lot of progress in 
tokamak performance over their first 
decades

Some key metrics in fusion

Since late ‘90, the stagnation was mostly due to 
size & cost (technology), not saturation due to 
physics

“fusion triple product”

fusion power

𝑃𝑓𝑢𝑠 ∝ 𝑅3𝐵𝑇
4 
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ITER is one of the biggest project of humankind

The future of tokamaks… 
towards fusion pilot plants (FPPs)
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The future of tokamaks… 
towards fusion pilot plants (FPPs)

In parallel, progress has continued steady in many areas

• Theory / simulations
• microturbulence and transport from fundamental physics
• Extended MHD models including conducting structures 

(whole device modeling)
• Data / ML

• Tokamaks produce huge amount of data 
Machine Learning is now almost everywhere in fusion

• Experiments
• New records in fusion energy (JET: 69 MJ)
• New records in pulse duration (EAST: 22 mins)

• Technology
• High-Temperature superconducting magnets
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The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy
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The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy

ITER
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𝑃𝑓𝑢𝑠 ∝ 𝑅3𝐵𝑇
4 



The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy

ITER In 2021, CFS and MIT demonstrated 
20 T Magnetic field
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The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy

ITER

SPARC

In 2021, CFS and MIT demonstrated 
20 T Magnetic field

This created a viable path 
for compact devices
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The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy

ITER

SPARC

In 2021, CFS and MIT demonstrated 
20 T Magnetic field

This created a viable path 
for compact devices
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𝑃𝑓𝑢𝑠 ∝ 𝑅3𝐵𝑇
4 

ARC

CFS (and partners) are also currently 
planning ARC: a fusion pilot plant



The future of tokamaks… 
towards fusion pilot plants (FPPs)

With all these advancement, private sector started envisioning 
a faster approach to fusion energy

ITER

SPARC
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𝑃𝑓𝑢𝑠 ∝ 𝑅3𝐵𝑇
4 

ARC

ITER SPARC ARC V2B

B0 [T] 5.3 12.2 10.8 

Ip [MA] 15 8.7 11.2

R0 [m] 6.2 1.85 4.25

a [m] 2 0.57 1.17

Pfusion [MW] 500 50 – 140 1000

Q 10 2 – 10 50

Pelectric [MW] -- -- 400

Comparison of ITER, SPARC and ARC

* V2B target parameters [J. Hillesheim APS-DPP 24]



The future of tokamaks… 
towards fusion pilot plants (FPPs)

SPARC is now under construction

Tokamak hall 

Magnet factory

Devens MA
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What are some challenges that tokamaks 
need to overcome?
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What are some challenges that tokamaks 
need to overcome?

Compact and future FPPs will require advance divertor solutions



What are some challenges that tokamaks 
need to overcome?

Another C-Mod Discharge
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What are some challenges that tokamaks 
need to overcome?

Another C-Mod Discharge
Disruptions are abrupt discharge 
termination due to loss of confinement

Could be caused due to
• internal factors (plasma instabilities)
• external factors (failure in a component)

Plasma energy is 
released in the ms time-
scale with potential 
damage to the device
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What are some challenges that tokamaks 
need to overcome?
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ITER: 
Plasma energy > 𝟓𝟎𝟎 MJ 
(~𝟏𝟎𝟎 kg TNT) 
released in < 1 – 100 ms

SPARC: 
Plasma energy ∼ 𝟏𝟎𝟎 MJ 
(~𝟐𝟎 kg TNT) 
released in < 3-10 ms

If it helps, let’s think in terms of TNT kilograms…

C-Mod: 
Plasma energy ≲ 𝟏 MJ 
(~𝟎. 𝟐 kg TNT) 
released in < 1-2 ms



What are some challenges that tokamaks 
need to overcome?
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What are some challenges that tokamaks 
need to overcome?
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ITER: 
Plasma energy > 𝟓𝟎𝟎 MJ 
(~𝟏𝟎𝟎 kg TNT) 
released in < 1 – 100 ms

SPARC: 
Plasma energy ∼ 𝟏𝟎𝟎 MJ 
(~𝟐𝟎 kg TNT) 
released in < 3-10 ms

If it helps, let’s think in terms of TNT kilograms…

C-Mod: 
Plasma energy ≲ 𝟏 MJ 
(~𝟎. 𝟐 kg TNT) 
released in < 1-2 ms

Disruptions lead to large heat and electromagnetic loads on the vessel

Disruption physics focuses on

• prediction / avoidance: ML has a strong role here

• Mitigation: Massive gas injection or pellet injection to radiate as much energy as possible

• consequences: Thermal and electromagnetic loads
• Vertical displacement events, runaway electrons, thermal and fast particle flux



Summary and final remarks…

• what tokamaks are and why the have the shape they have
• how a discharge and the plasma equilibrium look like
• the path towards fusion pilot plants based on the tokamak 

approach.
• Disruptions in Tokamaks
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So far, we briefly covered…

Many open areas of research (my very limited list):
• Integrated modeling
• MHD, control and disruption physics
• Core and edge Turbulent transport
• Boundary physics and plasma-wall interaction

Reach out at www.psfc.mit.edu! 

http://www.psfc.mit.edu/


Thanks!
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