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What is a fluid?

What words do we typically use to describe a fluid?

What makes a fluid unique from a solid?

What makes a fluid unique from a hand-full of particles?



Particle distribution functions track particle information
(Where are the particles, what are they doing?)

Number density of particles

N

fx,v,t)
At a location x At atime t
Examples:
1D Beam, Steady State fx,v,,t)
Glow Discharge f(r,z, 1)
Tokamak Plasma Equilibrium f(T‘, 0, (l), )

Reconnecting Plasma flx,y,z, , 1)



Example: 3D Maxwell-Boltzmann Velocity Distribution for a
collection of particles in thermodynamic equilibrium
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Example: 3D Shifted Maxwell-Boltzmann Distribution

(accelerated in the z-direction)
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Time-varying dynamics of a distribution function

d _of of of dv _ of of . of
rr AR Rl ril e il il i

Interaction between particles can also lead to changes in the distribution function
e.g. thermal equilibration of a beam of particles interacting with each other

Collision “Operator”

of af FOf df 4= (Internal Forces)
i/ G =gervaroai=(G)

Boltzmann Equation

With no collisions - Vlasov Equation



Calculating macroscopic properties from a distribution function

#

Velocity
Moments

Oth

1st

2nd

f(x,v,t) = Number density
of particles

Particle Density:

n(x,t) = jl dv f(x,v,t)

Flow Velocity:

u(x, t) = %fvl dv f(x,v,t)

Kinetic Energy:
1m
_ 2
Q(x, 1) =5 Jv dv f(x,v,t)

of | Of  Fof _ (df)
E a m ov dt coll

Conservation of Particles:

[ran(Gerogenm =] o ().,

Conservation of Momentum:

[ranGerrstnm =] o G,

Conservation of Energy:

d d Fo d
mjv dv f —f+ f mj v? dv —f
d0x mav coll
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A phenomenological approach to conservation laws

* Pick an infinitesimally small volume of the fluid

« The time rate of change of quantity X in the volume must be equal to

« Plus the net sources of X inside the volume

X _

P + (Volumetric Sources — Volumetric Sinks)



Diffusion coefficients describe flows induced by
concentration gradients in the fluid

0X
i + (Volumetric Sources — Volumetric Sinks)
/ Spatial Gradient in X
—D VX
\ Diffusion Coefficient (Diffusivity)

Vn —»

>
Position ) 10



Conservation of Particles (Continuity Equation)

« For a given plasma volume, what sources/sinks of particles might exist?
lonization
Chemical reactions
lon recombination
Vacuum pumps (global sink)
etc.

) 1



Conservation of Momentum (Force Balance)

« For a given plasma volume, what sources/sinks of momentum might exist?
Electric field force
Magnetic field force
Gravitational force
Pressure gradient force
Friction force
etc.
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Conservation of Energy

- For a given plasma volume, what sources/sinks of energy might exist?
* Resistive heating power
« Electromagnetic heating power
« Particle beam heating power
* Fusion reaction power
- Radiated power (continuum, line)
- etc.
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How would you describe a hydrogen plasma as a fluid?

Write out equations with words and/or symbols
State any assumptions that you make
Be as descriptive as you can!

Hint: First write out what species are present (why?)
H,, Hot, HO, HY, e
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Free diffusion of a plasma: Part 1

Suppose you have a plasma with a single ion species.

Derive an expression for the ratio between the velocity of an electron and an ion,
assuming that you know their kinetic energies. (What equation do you need?)

- E=(1/2)mv? > v./v; = sqrt(m;/m,) * sqrt(E./E;)

Calculate the value of this ratio when the ions and electrons have the same
temperature (kinetic energy), and the ions are H*.

- E.=E, 2 sqrt(E//E) =1, m,/m, ~ 1840 - sqrt(m,/m,) ~ 43, v /v, ~ 43
Calculate the value of this ratio for Art ions when T, =0.025eVand T,=5eV.
- sqrt(E./E;) = 14, sqrt(m,/m,) ~ 270, v./v; ~ 3816

Calculate the value of this ratio in the limit T; << T, (“cold ion” approximation).
= Vv /v; 2 infinite!
Describe what these tell you, in general, about the behavior of electrons vs. ions.
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Free diffusion of a plasma: Part 2

«  Suppose you drop a finite volume of plasma into an infinite space.

« Describe what happens to the electrons versus the ions.
— The electrons spread out quickly, leaving the ions behind.

- Describe what happens as a result of this difference in behavior.

— The charge separation between the fast electrons and the slow ions left produces an
electric field.

« Describe what must happen to reach a steady-state equilibrium.

— The electric field will decelerate the electrons and accelerate the ions, until the rate of
ions spreading out is equal to the rate of electrons spreading out.
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Electric Pressure Friction

Ambipolar diffusion Fod Gradient  Foroe
Force Force / Collision
Frequenc
Suppose there is no change in the \ l / aueney
momentum of the freely diffusing plasma mn% —0=qnE —kTVn —mnv,u
The outward particle fluxes of ions and ['=nu= +unE — DVn
electrons can be written in terms of their _ lal po KT
particle “mobility” mu and “diffusivity” D . ~mv,

Plasmas will self-organize to maintain quasi-neutrality!

An electric field is generated, which
slows down the electrons and speeds up
the ions to achieve equal fluxes

_D;— D, Vn
Ui+ He T

The effective diffusivity of ions and

electrons is equal D, < p, = File T He




Diffusion of a plasma across a toroidal magnetic field

Confinement Time ~ Diffusivity -

CONFINEMENT TIME 7 (msec)

Fig. 5.20 from “Introduction to Plasma Physics and Controlled Fusion”, Chen
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Diffusion mechanisms depend on plasma collisionality

BANANA DIFFUSION

MODIFIED
PLATEAU CLASSICAL
REGION DIFFUSION

Particle Diffusivity
o

Collision Frequency ¥

Fig. 5.22 from “Introduction to Plasma Physics and Controlled Fusion”, Chen
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Examples of fluid dynamics in plasma/fusion research:
Tokamak MagnetoHydroDynamic (MHD) Stability

https://www.youtube.com/watch?v=PwknwUZdHWs


https://www.youtube.com/watch?v=PwknwUZdHWs

Examples of fluid dynamics in plasma/fusion research:
Black Hole Accretion Disks

https://jila.colorado.edu/~pja/MRI_movies.html


https://jila.colorado.edu/~pja/MRI_movies.html

Examples of fluid dynamics in plasma/fusion research:
Tokamak Scrape-off-Layer Transport
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Courtesy of Shawn Zamperini, General Atomics 9) 22



Examples of fluid dynamics in plasma/fusion research:
Liquid Metal Plasma-Facing Surfaces

Channe | 1.2m

Magnet 0.74m

Gear Pump

Courtesy of Egemen Kolemen, Princeton University 9) 2



Examples of fluid dynamics in plasma/fusion research:
Cryogenic and Water Cooling Systems for ITER

https://www.iter.org/mach/cryo https://www.iter.org/mach/Cooling\Water



https://www.iter.org/mach/CoolingWater
https://www.iter.org/mach/cryo

For more on plasmas as fluids:

Lieberman and Lichtenberg, Principles of Plasma Discharges and Materials
Processing (2005)

Stangeby, The Plasma Boundary of Magnetic Fusion Devices (2000)
Freidberg , Plasma Physics and Fusion Energy (2007)
Chen, Introduction to Plasma Physics and Controlled Fusion (2016)

Hinton and Hazeltine, Reviews of Modern Physics, 48.2 (1976)
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