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I didn’t get very far!

Born here

DIII-D

Office
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• Overview/review of key ideas

• How does a tokamak work?

– Nested flux surfaces

– Shaping

– Heating and current drive

• Some current research areas

• How can you get involved?

Where are we going?
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What have you learned so far about fusion?

• Fusion is a clean, safe type of 

nuclear power with abundant fuel

• “Easiest” reaction is D-T

Wurzel et al, PoP 29, 062103 (2022)

See Srinivasan, 6/10

https://aip.scitation.org/doi/pdf/10.1063/5.0083990
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What have you learned so far about fusion?

Wurzel et al, PoP 29, 062103 (2022)

Ignition from 2022 on not shown here! See Simpson, 6/14 
• Fusion is a clean, safe type of 

nuclear power with abundant fuel

• “Easiest” reaction is D-T

• Reaction requires a high enough 

(Lawson criterion) triple product nTte

– We have made a ton of progress!

See Wurzel, 6/21

https://aip.scitation.org/doi/pdf/10.1063/5.0083990
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What have you learned so far about fusion?

• Fusion is a clean, safe type of 

nuclear power with abundant fuel

• “Easiest” reaction is D-T

• Reaction requires a high enough 

(Lawson criterion) triple product nTte

– We have made a ton of progress!

• There are different ways to confine a 

plasma to achieve fusion
– Gravitational, magnetic, inertial

– Stellarator

– Tokamak 

– Reversed field pinch, field reversed 

configuration, magnetic mirror, z-pinch, 

spheromak....
Wurzel et al, PoP 29, 062103 (2022)

See Proll, 6/13 (previous talk)

See Parke, 6/13 (next talk)

Ignition from 12/22 not shown here! See Kritcher, 6/8 

This talk

Ignition from 2022 on not shown here! See Simpson, 6/14 

https://aip.scitation.org/doi/pdf/10.1063/5.0083990
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What are the basic ideas behind confinement in a 

tokamak?

• Particles (mostly) stay along field lines 

• Close those field lines into a torus to confine them

• Add twists to keep particles from drifting out

• Confine plasma with toroidal and poloidal magnetic fields

See Dominguez, 6/11

See Duarte, Dominguez, 6/11

Toroidal

Poloidal
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What is a tokamak?

• Tokamaks confine with an externally produced 

toroidal field and a plasma current produced 

poloidal field

• TOKAMAK is a Russian acronym: 

(тороидальная камера с магнитными катушками)

“Toroidal Chamber with Magnetic Coils”

• Leading magnetic confinement concept in terms of 

number of facilities and funding

• Caveat!: I only have personal experience with DIII-D, so what I present 

today will be heavily biased towards DIII-D
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Many tokamaks around the world are making strides 

towards ignition

• Copper magnetic field coils
– DIII-D (USA), JET (UK), ASDEX-U (Germany), COMPASS 

(Czech Republic), WEST (France), TCV (Switzerland)

• Superconducting magnetic field coils
– EAST (China), KSTAR (Korea), JT60-SA (Japan)

• Low aspect ratio
– NSTX-U (USA), MAST-U (UK)

• Future public sector devices
– ITER (France)

– DEMO class devices: CFETR (China), EU-DEMO (EU), STEP 

(UK), FPP (US)

• Many private sector companies entering the 

market
– Commonwealth Fusion Systems (SPARC/ARC, US)

– Tokamak Energy (ST40, UK)

– DOE awarded grant to eight companies advancing 

designs and research and development for fusion power 

plants

– And more! Wurzel et al, PoP 29, 062103 (2022)

Approaching 

ignition 
(self-sustaining 
reaction)

https://www.fusionenergybase.com

https://www.energy.gov/articles/doe-announces-46-million-commercial-fusion-energy-development

Ignition from 2022 on not shown here! See Simpson, 6/14 

https://aip.scitation.org/doi/pdf/10.1063/5.0083990
https://www.fusionenergybase.com/
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Two types of tokamaks: Conventional aspect ratio and 

spherical tokamaks

“Donut”

A ≥ 4

“Cored apple”

A ≥ 1.25

Peng, Phys. Plasmas, 7, 1681 (2000).

Conventional tokamaks 

Usually A>2.5 

Ex: ITER, ASDEX, JET, DIII-D, 

EAST, SPARC…

Spherical tokamaks

A=1-2.5

Ex: MAST, NSTX-U…
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Two major U.S. facilities are DIII-D and NSTX-U, specializing in 

different aspect ratios

DIII-D

NSTX-U

DIII-D, 

Conventional tokamak

A=2.7

NSTX-U

Spherical tokamak

A=1.3
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• Overview/review of key ideas

• How does a tokamak work?

– Nested flux surfaces

– Shaping

– Heating and current drive

• Some current research areas

• How can you get involved?

Where are we going?
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Tokamaks use magnetic fields to confine a plasma in 

a toroidal vacuum vessel
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Tokamaks have nested magnetic surfaces

Two very important concepts:

(1) Magnetic field lines lie on nested surfaces 

of constant magnetic flux, Y

(2) Safety factor:

𝑞 =
𝑡𝑜𝑟𝑜𝑖𝑑𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑠

𝑝𝑜𝑙𝑜𝑖𝑑𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑠

=
𝑑𝜙
𝑑𝜃

or "pitch"

Tokamaks often use q95 which is just inside 

the last closed flux surface
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MHD equilibrium in toroidally symmetric geometry:

Surfaces described using ideal magnetohydrodynamics

(Ideal MHD)

Grad–Shafranov:

See Parsons, 6/11

Equilibrium equation relates poloidal flux function (Y)

Pressure (p) and current flux function (F)
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MHD equilibrium in toroidally symmetric geometry:

Surfaces described using ideal magnetohydrodynamics

(Ideal MHD)

Grad–Shafranov:

YN=1YN=0Equilibrium equation relates poloidal flux function (Y),

pressure (p), and current flux function (F)

• Nested magnetic surfaces of constant flux are 

called “flux surfaces”
• Pressure, current, q constant on a flux surface

• We use flux coordinates to collapse to a 1D 

system, plotted vs. “normalized flux” YN

• Last closed flux surface is called the “separatrix”

See Parsons, 6/11
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Pressure limit: Plasma “efficiency” can be defined by the 

parameter b

• Ratio of thermal pressure to magnetic pressure 

b=
𝒏𝒌𝑻

Τ𝑩𝟐 𝟐μ𝟎

• Plasma pressure (fusion output) pushes 

outwards and is balanced by magnetic 
pressure (economic cost)
• b ∝ output/cost

• “bang for your magnetic buck”

• 𝜷 limit (coupled with current limit) sets 

tokamak operating space
• Maximum plasma pressure and current 

allowable for given magnetic configuration

Taylor et al, PoP 2, 2390 (1995)

Tokamaks normalize to an empirical 

current limit:

https://doi.org/10.1063/1.871262
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Two general types of tokamak magnetic topologies 

Limiter:

A physical structure 
intentionally intersects 
a set of flux surfaces

R. A. Pitts, “Tokamak edge physics and plasma surface interactions” 2007 

https://crppwww.epfl.ch/~pitts/pitts/pitts_varenna_27_09_2007.pdf

Divertor: 
Magnetic structure 
is created to
localize exhaust
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Poloidal field coils control plasma shape

• Poloidal coils generate the 

confining fields that shape the 
plasma

• Plasma shape impacts 

stability and wall interactions

• Free parameters for shape 

control:
– Magnetic major (R), minor (a) radius
– Triangularity, 𝛿𝑢𝑝 = (𝑅𝑔𝑒𝑜 − 𝑅𝑢𝑝)/𝑎

– Elongation, 𝜅 = 𝑎/𝑏
– X-point location

– Separatrix location

EAST tokamak cross section

Poloidal 

field coils

Lower Single Null (LSN) Upper Single Null (USN)

Toroidal 

field coil

Vacuum 

vessel

𝑎
𝑏
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https://www.youtube.com/watch?v=Yu9C5TEhAdQ
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Example of a DIII-D plasma discharge

• Toroidal magnetic field 
ramps up first

• Central solenoid 
ohmically induces 
plasma current

• Auxiliary systems 
required to heat the 
plasma and drive more 
current 

• Radiated power 
measures represents 
energy loss from the 
system (measured by 
bolometers)

Bt

Ip

Paux

Ion Temperature

Electron Density

𝜷𝑵

Divertor Light

“flat top”

Prad
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Bt

Ip

Prad

Paux

Ion Temperature

Electron Density

𝜷𝑵

Divertor Light

• Ion temperature 
measured by Charge 
Exchange 
Recombination 

Spectroscopy

• Electron Density 
measured by 
interferometers

• Normalized 𝜷 calculated 

from “real time EFIT” 
equilibrium solver 

• Divertor light measured 
by filterscopes represent 
typical plasma 
instabilities

“flat top”

Example of a DIII-D plasma discharge

• Toroidal magnetic field 
ramps up first

• Central solenoid 
ohmically induces 
plasma current

• Auxiliary systems 
required to heat the 
plasma and drive more 
current 

• Radiated power 
represents energy loss 
from the system 
(measured by 
bolometers)



30

Bt

Ip

Prad

Paux

Ion Temperature

Electron Density

𝜷𝑵

Divertor Light

• Ion temperature 
measured by Charge 
Exchange 
Recombination 

Spectroscopy

• Electron Density 
measured by 
interferometers

• Normalized 𝜷 calculated 

from “real time EFIT” 
equilibrium solver 

• Divertor light measured 
by filterscopes represent 
typical plasma 
instabilities

“flat top”
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Diagnostics are a key part of tokamak research  How do you 

diagnose something that is so hot and in vacuum?
See Delgado-Aparicio, 6/21
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Need both current drive and heating in a tokamak

• Heating is required in a reactor to ~15 keV

• Non-inductive current drive is required for steady-state operation

• Physics of heating and current drive is very similar

– If there is current drive, there is also heating

See Diem, 6/21

DIII-D beamlines have 2 sources

Each source can deliver ~2MW

DIII-D Gyrotron “Yoda” 

(electon cyclotron)

Neutral Beam Injection

Wave heating

ITER’s ion cyclotron 

antenna

WEST Klystrons (lower hybrid)
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Tokamak is only one part of the machine hall 

“The Pit”
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Iter will be the biggest tokamak yet 

Iter site, 9/2023

Iter machine hall, 9/2023
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Iter will be the biggest tokamak yet 

Iter vacuum vessel segment (1/9), 1/2023
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• Tokamaks confine plasmas with toroidal and poloidal 

magnetic fields

• Tokamaks have nested flux surfaces, important quantities are 

conserved on a flux surface

– Normalized flux coordinate yN, safety factor q, pressure ratio b

• External coils shape and control the plasma

– Separatrix, x-point, SOL, divertor

• Tokamaks are complex, integrated facilities

– Heating and current drive, diagnostics

– Collaborative teams with diverse areas of expertise

What are some of the key ideas we’ve covered so far?
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• Overview/review of key ideas

• How does a tokamak work?

– Nested flux surfaces

– Shaping

– Heating and current drive

• Some current research areas

• How can you get involved?

Where are we going?
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Varied levels of confinement of particles, momentum, and energy 

depending on the plasma regime

• Two common plasma modes of operation
• L-mode = “low” energy confinement
• H-mode = “high” energy confinement, 

often associated w/ plasma instability 
called Edge Localized Mode (ELM)

• H-mode extrapolates well to future 

devices because of energy confinement 

(due to enhanced pressure from 

pedestal)

L
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0
0
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0
1
3
)

Evans et al, Nonlinear Dynamics Ch 3 (image A. Kirk, Culham)

MAST

https://doi.org/10.1088/0029-5515/53/4/043004
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Varied levels of confinement of particles, momentum, and energy 

depending on the plasma regime

• Two common plasma modes of operation
• L-mode = “low” energy confinement
• H-mode = “high” energy confinement, 

often associated w/ plasma instability 
called Edge Localized Mode (ELM)

• H-mode extrapolates well to future 

devices because of energy confinement 

(due to enhanced pressure from 

pedestal)

• ELMs deliver large transient heat fluxes to 

plasma facing components

• Other types of modes are an active area 
of research  e.g. H-modes w/o ELMs or 

regimes w/ different confinement scalings
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Divertor Light 

(filterscopes)

ELMs

Evans et al, Nonlinear Dynamics Ch 3 (image A. Kirk, Culham)

MAST

https://doi.org/10.1088/0029-5515/53/4/043004
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Disruptions are a rapid and complete loss of 

current and energy

• Threat for a tokamak, possible disaster for a reactor

– High heat flux, large thermal load to divertor

– Large electromagnetic forces

– Runaway electrons 

• Disruption avoidance

– Prediction, active control to avoid 

• Disruption mitigation

– Shattered pellet injection, massive gas injection
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High heat flux and narrow profile can damage 
divertor plates

• Many strategies to reduce divertor 

heat flux
– Add impurities to increase radiation in 

SOL

– Shaping the divertor baffle

– Expand magnetic flux using snowflake 

and super-X configurations

• Core–edge integration is grand 

challenge

– Have to mitigate heat flux without 

harming confinement

• Plasma facing materials in the divertor 
and main chamber wall See Schamis, 6/18
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– Shaping

– Heating and current drive

• Some current research areas

• How can you get involved?
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There are many tokamaks in the world you could work on!

• Currently two big tokamak facilities in the US 
– NSTX-U and LTX at Princeton Plasma Physics Laboratory (Princeton, NJ) 

– DIII-D National Fusion Facility (San Diego, CA)

– Universities have collaborations with PPPL and DIII-D and have on-site 

grad students

• Some US university tokamaks: Pegasus III (University of Wisconsin-

Madison), HBT-EP (Columbia University)

• International facilities

– Iter (France), JET (UK), ASDEX-U (Germany), COMPASS (Czech 

Republic), WEST (France), TCV (Switzerland), EAST (China), KSTAR 

(Korea), JT60-SA (Japan), MAST-U (UK)
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Major topical areas of open research  You can be part of the team 

to meet these challenges!

• Many open questions and challenges to address to put fusion on 

the grid

• Recent community plan aligned goals and prioritized research 
objectives (Final report here: https://arxiv.org/abs/2011.04806)

• Exciting new opportunities for engagement (ITER, SPARC, EXCITE 

proposed by NAS and CPP reports, milestone based DOE grants to 8 

private companies, including 2 tokamak companies…)
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Tokamaks represent a key path towards achieving fusion energy

• Tokamaks are toroidal devices that 

use toroidal and poloidal magnetic 

fields to confine the plasma

• Tokamaks can meet the energy 

challenge

• Two tokamaks in the US (NSTX-U and 

DIII-D) used to study and model 

plasma physics for extrapolation to a 

fusion pilot plant

• Complex environments with many 

integrated teams and exciting 

science
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Thank you and good luck with your research!


