

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

The high-Z challenge and advances in core x-ray spectroscopy

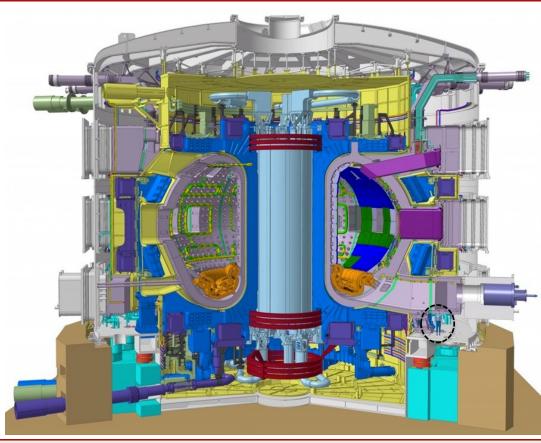
Luis F. Delgado-Aparicio (PPPL), Advanced Projects Department Princeton, PPPL, 06/21/2024

Outline

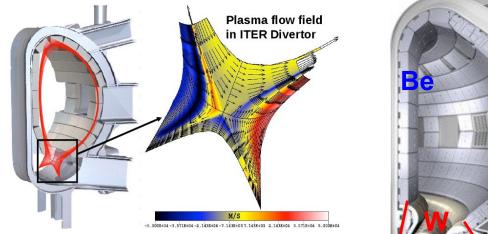
) Magnetically confined fusion (MCF) plasmas and the Zchallenge

2 Radiation and the basic need of x-ray spectroscopy?

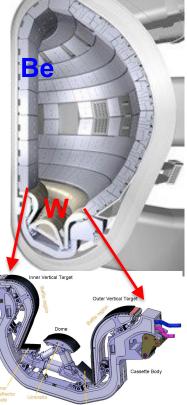
3 Take home message: three types of x-ray diagnostics


Tokamaks (and stellarators) spread around the world study different plasma parameters and shapes

ITER will be the first time we have net energy (more energy OUT than IN)


- ITER is a collaboration between USA, EU, China, Japan, Korea, India and Russia
- It's expected to produce 500MW of power using 50MW to run ...this is the 1st time in history where Pout>Pin
- First plasmas "expected" by 2025
 - Many challenges ahead!
 - The Z-challenge? (low-Z vs high-Z)

With the help of detailed simulations ITER scientists "decided" on a wall covered with **low**- and **high**-Z PFCs


Simulations of plasma flows and plasma-wall interaction have had a decisive influence on the design of ITER wall

⇒ It's a decision on the edge conditions which will alter core performance

Edge localized modes (ELMs) and disruptions can impact integrity of divertor cassettes

NSTX-U

The low-Z (Li, Be, C, B) vs high-Z (Fe, Mo, W) plasma facing component (PFC) challenge - IDEAL

Both low- & high-Z materials are currently being used for the **PFCs**, but each has technological hurdles.

1) Low-Z materials:

a) Typically have higher erosion rates b) Their injection into the main chamber will result in an increase of Z_{eff} and collisionality ($v_{e,Z}$). c) H-, D- & T-retention is a difficult issue!

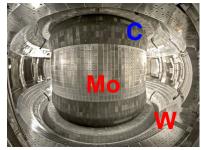
 Augment of Z_{eff} will lead to:
a) Reduce fuel purity (n_D/n_e) and reactivity (S_n∝n_D² or n_Dn_T).
b) But contributing less to radiated power density: P_{rad}=n_en_DL_D+n_en_CL_c+Σn_en_ZL_Z MAST, CCFE, Oxfordshire, UK

NSTX-U @ PPPL, Princeton, NJ

The low-Z (Li, Be, C, B) vs high-Z (Fe, Mo, W) plasma facing component (PFC) challenge - **REAL**

- 3 Conversely, <u>high-Z materials</u> have good properties as a PFCs:
 - a) Low H/D/T retention.
 - b) High-heat tolerance (e.g. high melting points)
 - c) Low erosion (sputtering) rates.
 - d) Small contribution to Z_{eff} :

 $Z_{eff} = n_D / n_e + \frac{36n_C}{n_e} + \frac{\Sigma(n_z / n_e)Z^2}{\Sigma(n_z / n_e)Z^2}$


However, if high-Z impurities accumulate to any substantial level (e.g. high-n_Z/n_e), this will lead to:
a) Exponentially enhance the radiation power losses (∝Z⁴): P_{rad}=n_en_DL_D+n_en_CL_c+Σn_en_ZL_Z

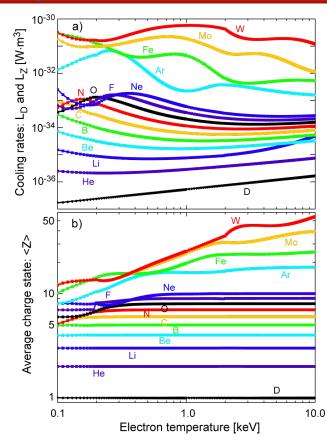
b) Reduce the heating efficiency and modifying the overall power balancec) Radiation collapse

Tore Supra/WEST in France

EAST in China

C-Mod @ MIT, USA

NSTX-U


The low-Z (Li, Be, C, B) vs high-Z (Fe, Mo, W) plasma facing component (PFC) challenge - REAL

- 3 Conversely, <u>high-Z materials</u> have good properties as a PFCs:
 - a) Low H/D/T retention.
 - b) High-heat tolerance (e.g. high melting points)
 - c) Low erosion (sputtering) rates.
 - d) Small contribution to Z_{eff} :

 $Z_{eff} = n_D / n_e + \frac{36n_C}{n_e} + \frac{\Sigma(n_z / n_e)Z^2}{\Sigma(n_z / n_e)Z^2}$

However, if high-Z impurities accumulate to any substantial level (e.g. high- n_z/n_e), this will lead to: a) Exponentially enhance the radiation power losses ($\propto Z^4$): $P_{rad} = n_e n_D L_D + n_e n_C L_c + \Sigma n_e n_Z L_Z$

b) Reduce the heating efficiency and modifying the overall power balancec) Radiation collapse

NSTX-U

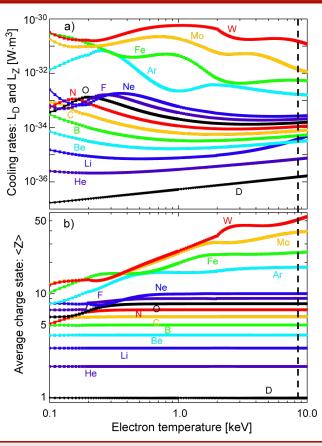
Radiative power densities (vis/UV/x-ray) & charge state <Z> can be obtained using coronal equilibrium

Parameterizing equations of interest for two-impurity plasma

Quasi-neutrality:

$$= \frac{n_D}{n_e} + \langle Z_1 \rangle \frac{n_{Z1}}{n_e} + \langle Z_2 \rangle \frac{n_{Z2}}{n_e}$$

Effective charge:


$$Z_{eff} = \frac{n_D}{n_e} + \langle Z_1 \rangle^2 \frac{n_{Z1}}{n_e} + \langle Z_2 \rangle^2 \frac{n_{Z2}}{n_e}$$

Normalized radiated power density:

$$\hat{P}_{rad}^{V} \equiv \frac{P_{rad}^{V}}{n_e^2 L_D} = \frac{n_D}{n_e} + \frac{n_{Z1}}{n_e} \frac{L_{Z1}}{L_D} + \frac{n_{Z2}}{n_e} \frac{L_{Z2}}{L_D}$$

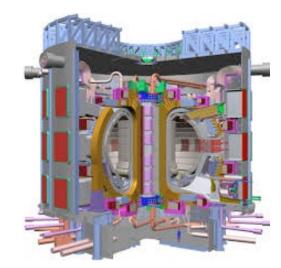
Hydrogenic cooling rate:

$$L_D = 5.35 \times 10^{-37} T_e^{1/2} [\text{keV}] \text{ W} \cdot \text{m}^3$$

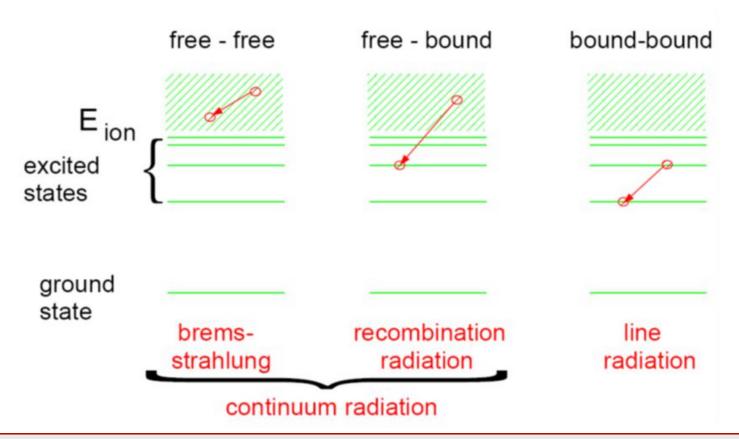
NSTX-U

Why is important to measure x-rays emitted from tokamak and stellarator fusion-grade plasmas ?

- A significant fraction of the power delivered to the plasma is lost in the form of radiation [even in an ideal pure H plasma].
- 2 A subset of P_{rad} : In real conditions could be as high as 90%.
- ③ X-rays are the most dominant source of radiation from hot plasmas: $hv \sim T_e$: <u>Exercise</u>: For 100 eV< T_e <20 keV ⇒ 0.5< λ <130 Å ⇒ <u>X-rays!</u>
- ④ Measurement of power losses in the x-ray range enable the characterization of parameters such as, n_e, n_z, T_e, T_i, v_φ, v_θ, to be used in describing/studying:
 - a) MHD and reconection events (from hot core to cold edge).
 - b) Transport coefficients (e.g. diffusivity and pinch velocity).
 - c) Radial electric field (E_r)
 - d) Magnetic flux-surface reconstructions: $T_e(\psi) \Rightarrow J$ and q



X-Ray Goggles

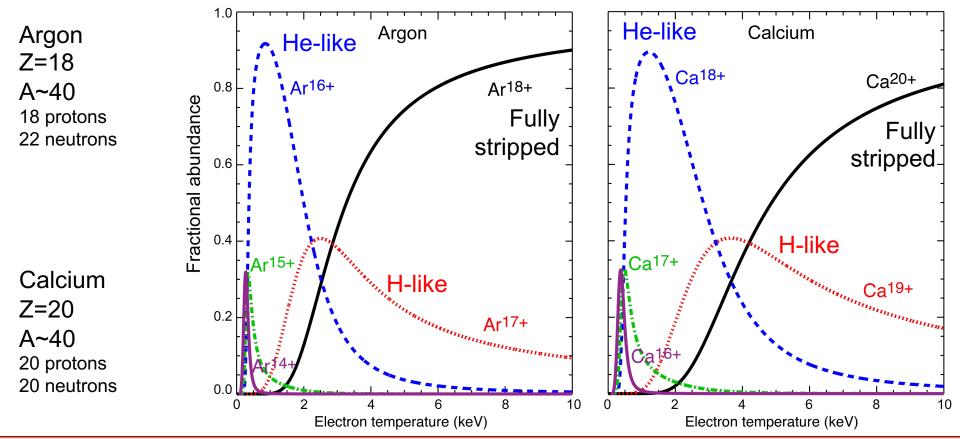

THE X-RAY CASE: ...how to diagnose x-rays from thermonuclear plasmas ?

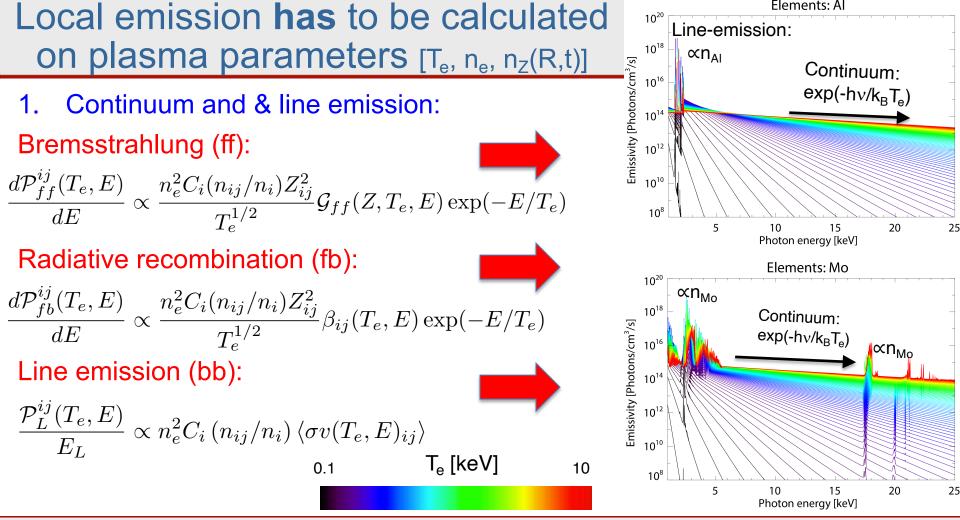
Nearly 90% of the radiated power in ITER will be in the x-ray range (V_{ITER}~840 m3)

SXR: 1<E<20 keV HXR: 20<E<400 keV

<u>Main radiation mechanisms</u>: Bremsstrahlung (ff), radiative recombination (fb) & line-emission (bb)

NSTX-U

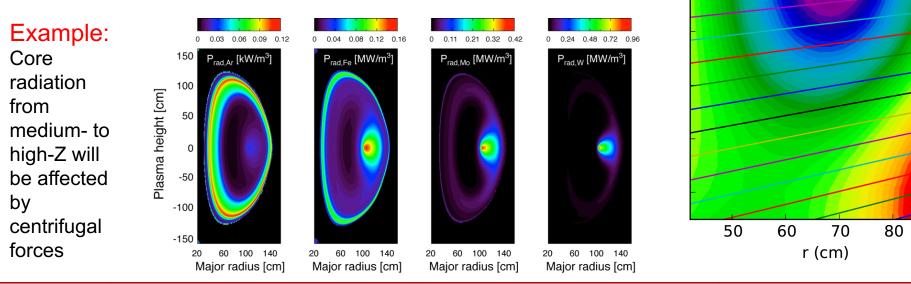

Coronal equilibrium (ionization charge balance)


- Commonly used in fusion plasmas and in the solar corona
- Assumes three body-recombination rate is small
- Balance between electron-impact ionization & radiative recombination

$$\underbrace{n_e n_Z \mathcal{S}_{Z \to (Z+1)}(T_e)}_{Ionization} = \underbrace{n_e n_{(Z+1)} \alpha_{Z+1 \to Z}(T_e)}_{Recombination}$$
$$\Rightarrow \frac{n_{(Z+1)}}{n_Z} = \frac{\mathcal{S}_{Z \to (Z+1)}(T_e)}{\alpha_{Z+1 \to Z}(T_e)}$$

<u>Result</u>: Ionization degree is independent of density and increases with T_e
Low-Z ions (Be, B, C) are often fully stripped

Fractional abundance calculations (n_{ij}/n_i) depend only on the local electron temperature (issues with nomenclatures ???)



NSTX-U

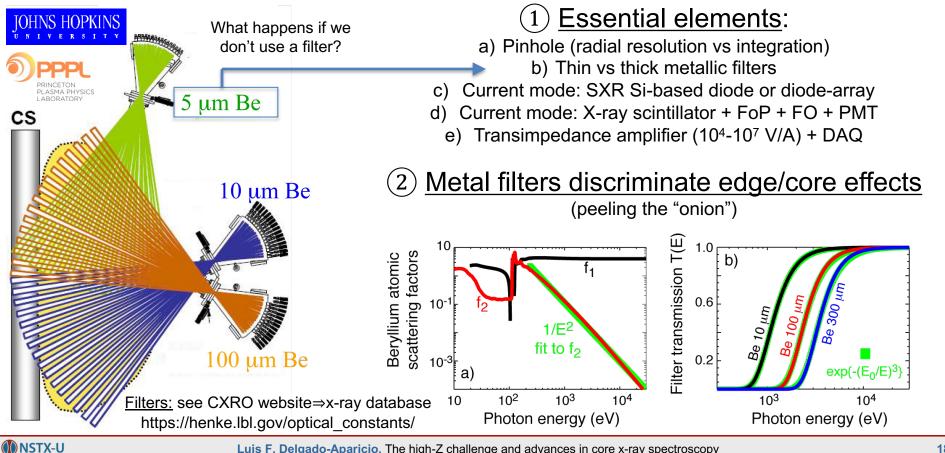
SXR brightness measurements are lineintegrated along detection sightlines

- 2. Visible/UV/x-ray tomography:
- Emmisivity is a flux-surface function
- Inversion (B=M × E \Rightarrow E=M⁻¹ × B)
- 3. Transport/heating asymmetries (warning):

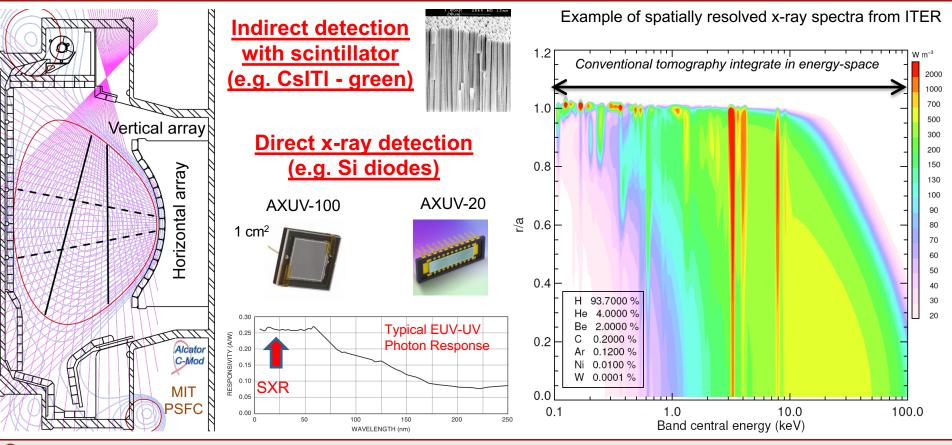
NSTX-U

Luis F. Delgado-Aparicio, The high-Z challenge and advances in core x-ray spectroscopy

90

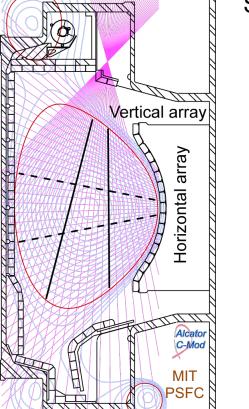

Take home message: You have three alternatives (...but with multiple detection options) in the x-ray range !

(1) Conventional broadband x-ray measurements (e.g. SXR tomography \Rightarrow confinement, MHD, equilibrium)


2 Doppler line-radiation x-ray measurements (e.g. n_Z , T_e , T_i , v_{ϕ} , v_{θ} , \Rightarrow calculation of E_r)

3 Modern broadband PHA & multi-energy measurements (e.g. Z_{eff}, n_z, T_e, n_{e,fast})

1.- Conventional SXR tomography consists of an array of diodes/detectors integrating the local plasma emissivity



Conventional SXR tomography integrates in photonenergy using metal filters diode arrays and TIAs

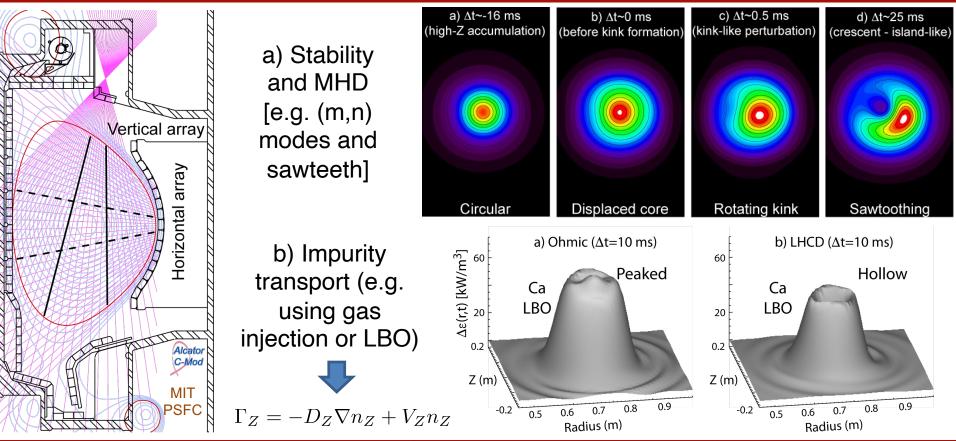
NSTX-U

Spatial and energy integration means also that it is very difficult to extract local plasma parameters from emission

SXR systems measure line-integrated continuum & line-emission

 n_e : electron density; n_i : ion (H, D/T) density

n_Z: impurity density (He, B, C, O, Ar, Mo, W)


 T_e : electron temperature; "Maxwellian" distributions $f(E_e/k_BT_e)$

 θ -asymmetries as F[v_{ϕ}: toroidal velocity, M_Z: ion mass] (vertical or tangential views are needed)

L: Length of integration, θ : poloidal angle (radial and poloidal coverage)

Energy response T_{filter}(E_{ph}): transmission function of filter Detector response: S(E_{ph})

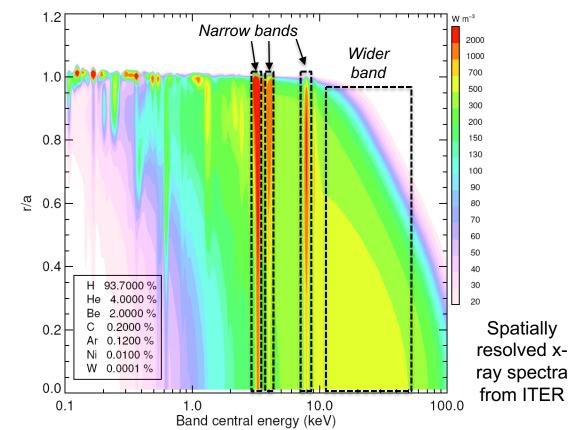
However, conventional SXR tomography is still being used for stability, MHD & transport studies

NSTX-U

<u>Take home message</u>: You have three alternatives (...but with multiple detection options) in the x-ray range !

- (1) Conventional broadband x-ray measurements (e.g. SXR tomography \Rightarrow confinement, MHD, equilibrium)
- **Output** Doppler line-radiation x-ray measurements (e.g. n_Z , T_e , T_i , v_{ϕ} , v_{θ} , \Rightarrow calculation of E_r)
- 3 Modern broadband PHA & multi-energy measurements (e.g. Z_{eff} , n_Z , T_e , $n_{e,fast}$)

We also need to extract local plasma information !!!


How to extract plasma physics parameters from narrow and/or wider SXR and HXE energy bands ?

Narrow energy bands

- Doppler spectroscopy
- High-resolution spectrometers
 - E/∆E~5000-200000
- Probes mainly the ion-channel
 - T_i , $V_{\phi,\theta}$, n_Z ... T_e (line-ratios)

Wider energy bands

- Multi-energy spectroscopy
- Low-resolution spectrometers
 - E/∆E~10-50
- Probes e- and ion channels
 - T_e , n_Z , ΔZ_{eff} , Z_{eff}
- n_{e,fast} (e.g. LHCD, runaways)

NSTX-U

X-ray crystal imaging spectrometers enable $T_{i,e}$, $v_{\phi,\theta}$ and $n_{Z's}$ measurements via Doppler broadening & line shifts.

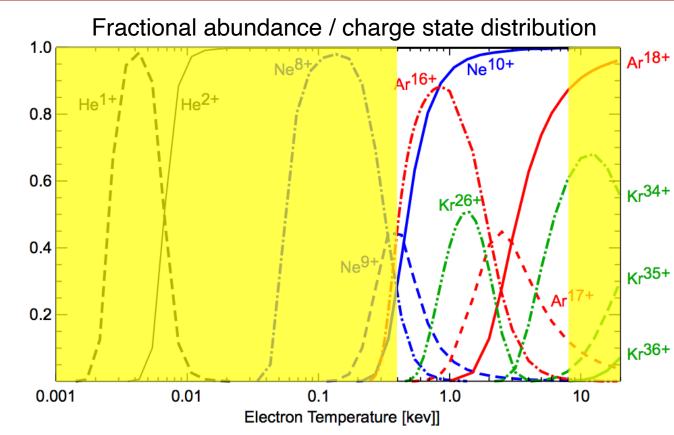
- 1 Not all reactor concepts consider NBI's (CXRS). Spontaneous rotation ($\propto W_{MHD}$) may provide the solution for stabilization.
 - 2) Measurement of ion-temperature (T_i) , toroidal and poloidal velocity $(v_{\phi,\theta})$ and impurity density $(n_{Z's})$ are important for understanding and optimizing confinement:

a) ∇T_i driven turbulence (ITG) is a leading candidate for explaining anomalous ion thermal transport.

b) V_{ϕ} and dV_{ϕ}/dr play important roles in the H-mode transition, ITB-formation, and RWM-stabilization.

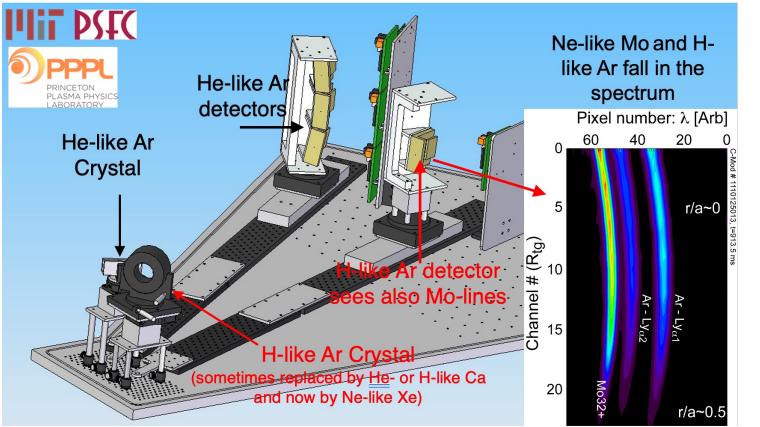
c) Radial electric field (\propto n_Z, T_i, v_{ϕ, θ})

d) Z-transport/accumulation needs to be studied & controlled/avoided


Choosing the appropriate (non-perturbative \Rightarrow low n_z & P_{rad}) extrinsic impurity gas-puff to do x-ray spectroscopy

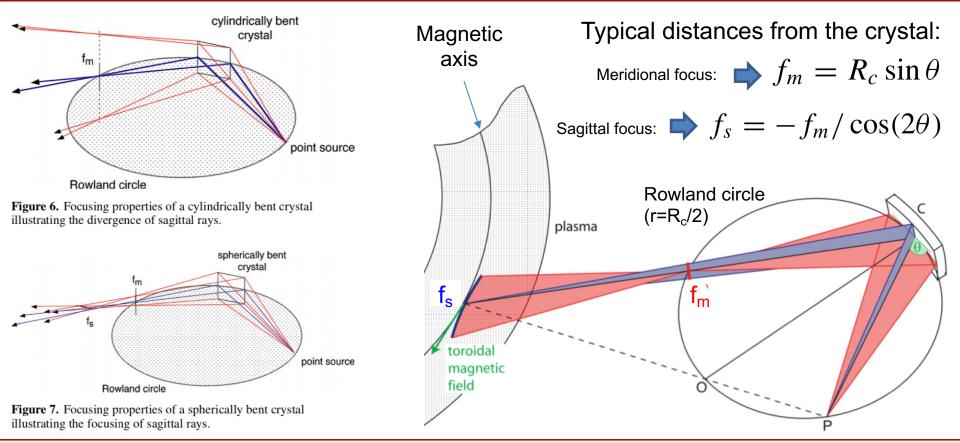
① For the $T_e \in [0.5,5]$ keV, He & Ne are fully stripped except in the cool edge region.

② H- and He-like Ar are dominant $T_e \in [0.5,5]$ keV


③ Kr or Xe could be used for diagnosing the core $T_e \in [4,20]$ keV, but they are more "<u>perturbative</u>" than Ar for the same absolute density,

⇒puff less Kr/Xe

NSTX-U


X-ray crystal imaging spectrometers revolutionized our field with T_i and $V_{\phi,\theta}$ profile measurements

Similar systems have been installed in NSTX, KSTAR, EAST, LHD, W7 and in the future, NSTX-U, WEST, **JT60SA** & ITER

NSTX-U

Focusing properties of spherical x-ray crystal

NSTX-U

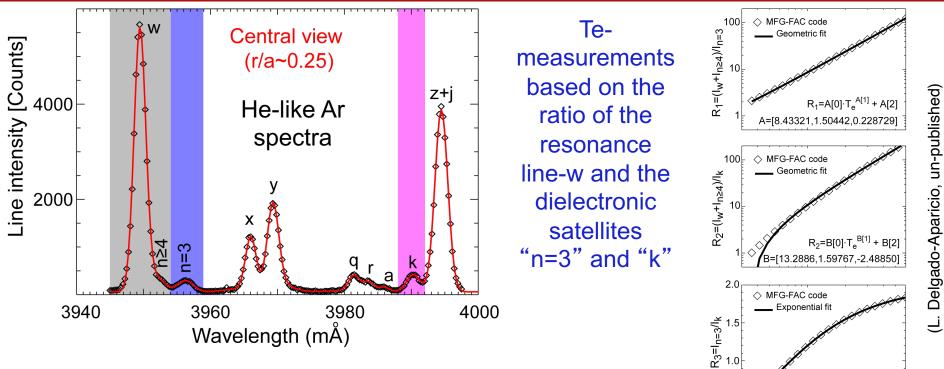
Crystals help achieving high-spectral response (E/ Δ E>10⁴) for high-resolution T_e, & v_{ϕ,θ} measurements

(1) Bragg diffraction: $\implies 2d\sin\theta = n\lambda$

(2)

Assuming a constant "d", the observed relative wavelength shift (DS: Doppler shift) is given by:

$$\frac{\Delta\lambda}{\lambda_0}|_{DS} = \sqrt{\frac{1+v/c}{1-v/c}} \approx \frac{v}{c} \approx \frac{\Delta\theta}{\tan\theta}$$


v is the relative velocity between the source & detector

3 The value of $\Delta heta_{ extsf{max}}$ from Johann error (Je): $(\Delta heta)_{Je} = l_c^2 / 8 R_c^2 an heta$

(4) Resolving power:
$$\implies \frac{\lambda}{\Delta\lambda} = 8 \frac{R_c^2}{l_c^2} \tan^2 \theta$$

dsin0

Electron temperature T_e-profiles can also be obtained using line-ratios between resonance and satellite lines

Considered to be a secondary diagnostic technique for the electron temperature (T_e) JT60SA and ITER.

NSTX-U

Luis F. Delgado-Aparicio, The high-Z challenge and advances in core x-ray spectroscopy

R₃=C[0]+C[1]·exp(-C[2]/T_e) C=[-0.0122.2.0096.0.5064]

T_e (keV)

3.0

6.0

1.0

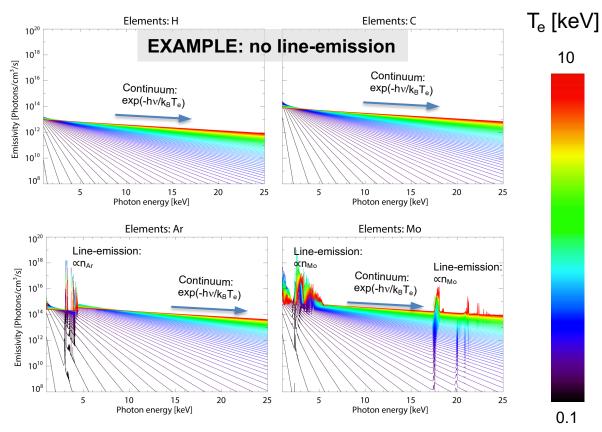
0.5

0.3

Take home message: You have three alternatives (...but with multiple detection options) in the x-ray range !

(1) Conventional broadband x-ray measurements (e.g. SXR tomography \Rightarrow confinement, MHD, equilibrium)

2 Doppler line-radiation x-ray measurements (e.g. n_Z , T_e , T_i , v_{ϕ} , v_{θ} , \Rightarrow calculation of E_r)


3 Modern broadband PHA & multi-energy measurements (e.g. Z_{eff} , n_Z , T_e , $n_{e,fast}$)

We also need to extract local plasma information !!!

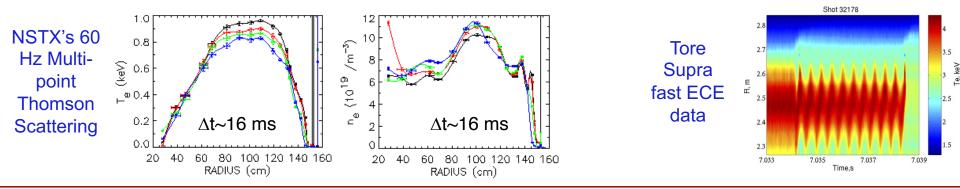
Motivation #1: "spatially" resolve continuum & lineemission to derive local plasma physics parameters

10

0.1

Simultaneous:

- Time resolution
- Spatial resolution •
- **Energy resolution**
- In real-time...


Motivation #2: Develop ME-SXR imaging for magnetically confined fusion plasmas with a unique capability

Unique opportunity of measuring, *simultaneously*, a variety of plasma quantities:

a) electron temperature profiles $(T_e(R,t))$ b) medium- to high-Z impurity concentration profiles $(Z_{eff}, n_Z \Rightarrow \Delta Z_{eff})$ c) the birth of suprathermal e^{-} ($n_{e,fast}$) d) plasma position (R_0 , Z_0)

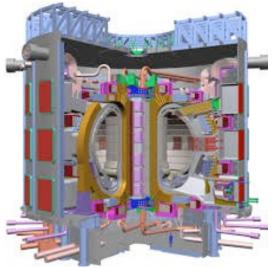
Especially applicable for:

Spherical tokamaks: No T_e ECE-measurements in STs due to low- B_{ϕ} Burning plasmas: Complement other techniques such as TS and ECE

NSTX-U

Luis F. Delgado-Aparicio, The high-Z challenge and advances in core x-ray spectroscopy

Motivation #3: ... think really large (burning plasmas) !!!

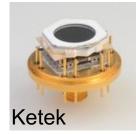

Unique opportunity of measuring, *simultaneously*, a variety of plasma quantities:

a) electron temperature profiles $(T_e(R,t))$ b) medium- to high-Z impurity concentration profiles $(Z_{eff}, n_Z \Rightarrow \Delta Z_{eff})$ c) the birth of suprathermal e^{-} ($n_{e,fast}$) d) plasma position (R_0 , Z_0)

JT60SA, ITER & DEMO!

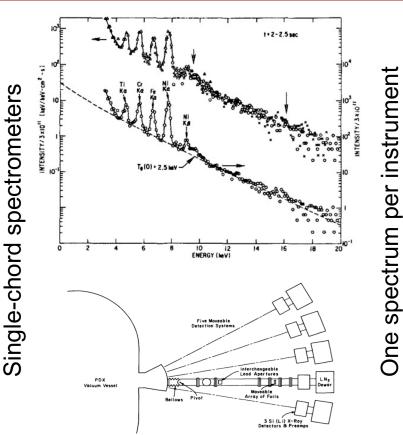
This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

e) $T_e(R,Z) \Rightarrow \Psi$, J & q

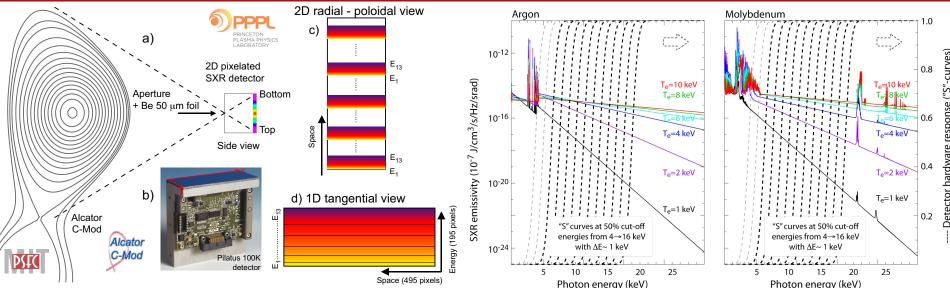


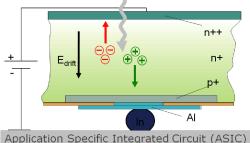
INSTX-U

Background: Conventional photon counting ME-SXR systems use Si(Li), HgI₂, Si-Ge-CdTe diodes and SDDs


1 **Detectors in photon-counting mode** (<T_e>, <Z_{eff}>, <n_{e,fast}>, <n_Z>)

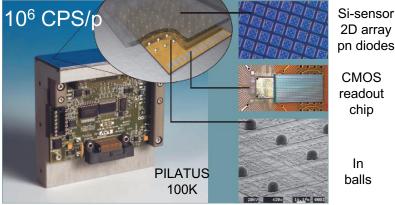
- Pulse height analysis (PHA)
- Good energy resolution (100-200 eV)
- Slow time-response (20-50 ms)
- Low efficiency at high-energies
- Very poor profile definition
- Still used in our community (HT7, TCV, HL-2A)


NSTX-U


Luis F. Delgado-Aparicio, The high-Z challenge and advances in core x-ray spectroscopy

Initial ME-SXR imaging tests in C-Mod (@MIT) combined the best features from PHA & multi-foil methods

Pin-hole camera with multi-energy pixels allowed simultaneous spatial and energy resolution From sampling the continuum radiation from Ar & Mo one can measure $T_e \ \& \ n_e^2 Z_{eff}$


Pilatus silicon detectors enables breakthrough of 100k pixels (minimum) at single or multiple energy ranges

X-ray

Operates in single photon counting mode

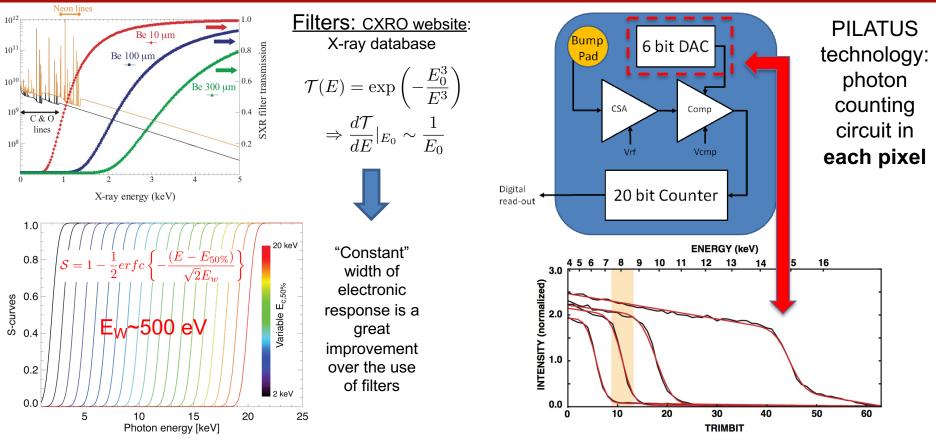
CMOS hybrid pixel technology developed originally for synchrotrons (CERN + PSI + DECTRIS)

2D arrav pn diodes CMOS readout

chip

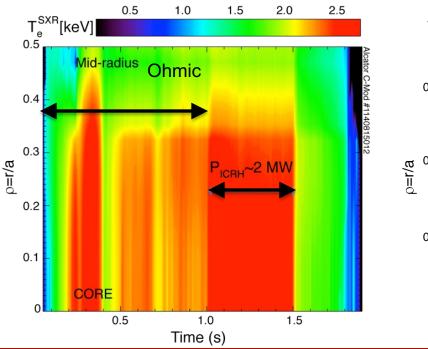
In balls Thanks to important advances in the x-ray detector technology it is now possible to simultaneously record high resolution images of x-ray photons at single OR multiple energy ranges through direct x-ray detection.

100K to 12M pixels (PILATUS: 172 μm, EIGER: 75 µm)

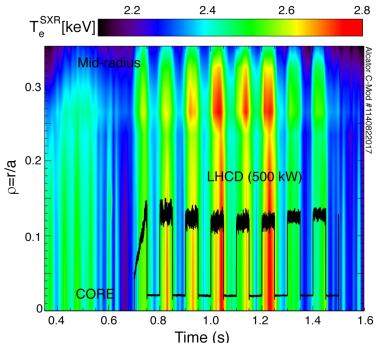


PILATUS3 900K-IPP in-vacuum detector for x-ray plasma spectroscopy

> (dimensions of a 100K system: 487x195 pixels)


Comparator and triming voltages on each pixel allow individual coarse & fine tuning of energy range

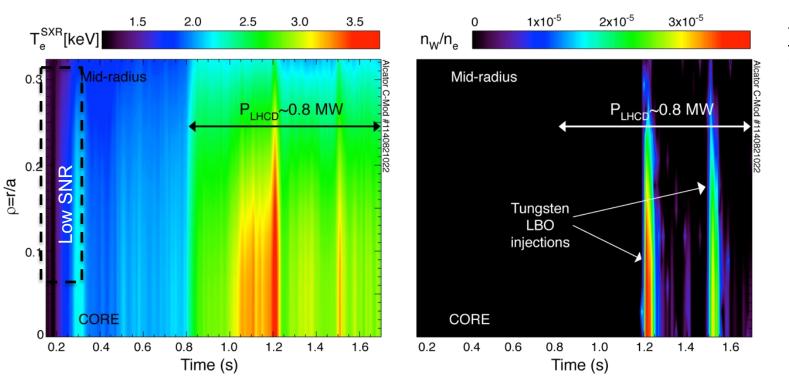
NSTX-U


<u>Goals #1&2</u>: SXR-inferred T_e profiles can be obtained during Ohmic, ICRH & LHCD scenarios

- ICRH heats up ions & electrons
- EEDF function is still Maxwellian

NSTX-U

- LHCD drives current and heat e⁻
- LHCD present challenges for ECE

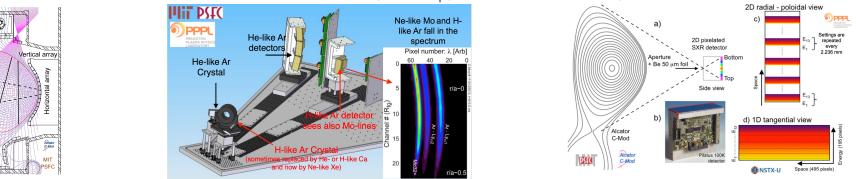


Note: Thin Si detectors are sensitive mostly to the Maxwellian part of the electron distribution function

<u>Goal #3</u>: separate dynamic evolution of T_e(R,t) from transient laser-blow-off contributions during LHCD

Tungsten density fraction

ME-SXR inferred $T_e(r,t)$

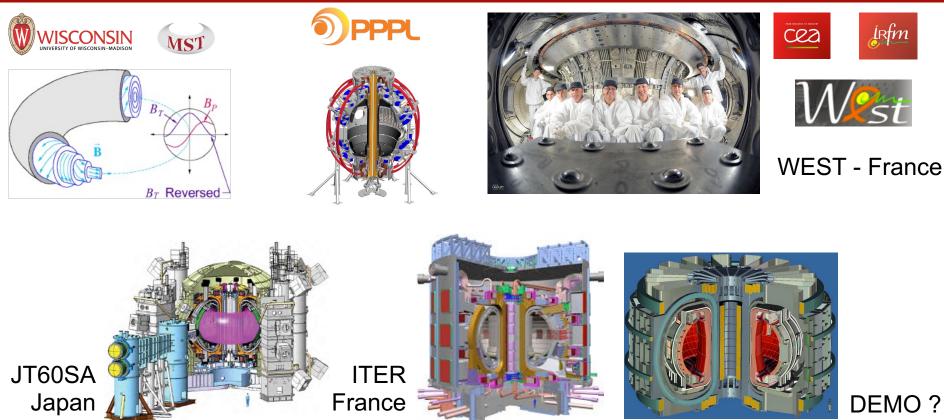

<u>To-do</u>: • Estimate n_Z/n_e using other diagnostics and compare

• Test Mo and W impurity transport in inductive & non-inductive scenarios

INSTX-U

Luis F. Delgado-Aparicio, The high-Z challenge and advances in core x-ray spectroscopy

Summary: Modern x-ray diagnostics can help study MHD and resolve n_Z, T_{e,i}, V_{φ,θ}, Z_{eff} & n_{e,fast} profiles


1 With the selection of W for the divertor in ITER, understanding the sources, transport and confinement of high-Z impurities is crucial to ITER success.

(2) A significant fraction of the power delivered to the plasma is lost in the form of radiation. In the x-ray range (subset of P_{rad}) could be as high as 90%.

(3) Modern diagnostics in x-ray range allow us to probe n_Z , $T_{e,i}$, $V_{\phi,\theta}$, Z_{eff} & $n_{e,fast}$ and their profiles!

NSTX-U

New core x-ray diagnostic systems (US-lead) will be installed in NSTX-U, MST, WEST, JT60SA to ITER

NSTX-U