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| was 100% sure of what | wanted to do, for about 8
months at a time
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e End of Sophomore/Junior year: Digital circuit design/integrated circui

Start of college: Power electronics for residential buildings

Senior year: Condensed matter physics

MS: High-energy particle detector research

e PhD: HED plasma experiments
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What are we going to talk about today?

e What is HED physics?
e How do create HED conditions?
Co What problems do scientists in HED physics work on?

e How do experimenters diagnose HED plasmas?
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This lecture is a biased introduction to HED plasmas

| spend most of my time on nanosecond laser-driven HED experiments

e This will skew the talk towards those subjects

There is a large amount of work in short pulse (< 10 ps) laser plasmas

Also pulsed power physics (current-driven HED physics)

@ There are also computational efforts involved in all of the work that | am
not doing justice here
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.
Some of the jargon of HED physics

Term Description/example

Micron (um) A human hair is 100 pm

Nanosecond (ns) | Light travels about one foot per nanosecond
Electron volt (eV) | 1 eV = 11000 K (20000 °F)

lonizing radiation | X-rays are ionizing radiation

Energy-density Pressure has the units of energy density

Shot A single firing of an experimental facility

Target The experimental package used at HEDP facilities
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HED physics concerns matter at pressures greater than
1 million atmospheres
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Fig. 1.1. Regimes of high-energy-density physics. Adapted from the NRC Report:
High Energy Density Physics: The X-Games of Contemporary Science

Image credit: R P. Drake High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics
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So, what does that mean in more practical terms?

@ Number of particles in the Debye sphere

o A= 60:57' N = n3 27A3 £ lo 1on .'ﬂ‘c'p/‘f*’s
@ Coupling parameter
[l)_—gnl?]j‘Ik _ 1 Cerdo g Golli3a-
° = wksT — m e ?v’
'H.omsl

e Degeneracy parameter

2/3
co=fT B = (&) <[ ¢ Prrenc,

e Other dimensionless parameters that may matter relate to relativity and
quantum electrodynamics
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How does this affect the way we think about/model
plasmas
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...
How do we model these plasmas?

Euler equations (fluid description)

Radiation transport equation (Radiation hydrodynamics)

Maxwell’s equations (Magnetohydrodynamics/Particle-in-cell)
e Boltzmann equation (Kinetic description)

e And more! Density functional theory, molecular dynamics, etc.
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.
How do we generate these conditions in a laboratory?
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Image credits: Laboratory for Laser Energetics; Sandia National Laboratories; Lawrence Livermore National Laboratory; ZEUS fécility
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.
High-energy or high-intensity lasers interact with
matter to produce plasma

Laser ablation produces a plasma at the surface of a solid

This produces a pressure wave that propagates into the solid

e Collisions between electrons and ions absorb energy from the laser

Different physical processes drive high-intensity laser-matter interactions

For high-energy lasers: 10s kJ-MJ in one nanosecond; for high-intensity
lasers 1-100 J in 0.025-10 ps
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A laser can be thought of as oscillating electric and
magnetic fields
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Electromagnetic waves of low enough frequency can
not propagate in a plasma

e Dispersion relation: w? = c2k? + wge

_ ng?
® Wpe = \/aome
J— 2 - 2 H - .
° ck=,/w “he ! ‘c 1( s v“‘!(s:‘.‘,’
e This leads to a critical density where the laser can no longer propagate,
_ meeow%
ne = 2

q
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Laser deposit energy into plasmas through interactions
with electrons
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A high-energy laser hitting a solid surface is a pretty
complicated process
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Image credit: R P. Drake High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental-Astrophysics
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A high-energy laser hitting a solid surface is a pretty
complicated process
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Large (>10s kA), pulsed (= 100 ns) currents heat
wires to create plasma

@ Joule heating, P,,; = Vinslms, drives wire or gas targets to the plasma
state

@ The Lorentz force either implodes or explodes the plasma

@ University-scale machines will use about 1 MA currents; The Z-Facility
uses about 25 MA
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The Lorentz force manipulates the plasma leading to
implosions, outflows, and jets
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Slide credit: Prof. Ryan McBride MIPSE seminar winter 2017
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The Lorentz force manipulates the plasma leading to
implosions, outflows, and jets

Basic Pulsed Power Experimental Setup m

PIHLI g (’; t) PIHU g (r’ t)

Slide credit: Prof. Ryan McBride MIPSE seminar winter 2017
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The Lorentz force manipulates the plasma leading to
implosions, outflows, and jets

Imploding Geometry for Highest Pressures & EEES
Diagnostic Access

Used for cylindrically
converging experiments to
achieve highest pressures
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Slide credit: Prof. Ryan McBride MIPSE seminar winter 2017
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Reversing the direction of the current produces radially
outwards flows

Exploding Geometry for Material Properties
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There are other methods for creating HED plasma
conditions

e lon beams
@ Isochoric heating with proton beams

e X-ray heating
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.
There are other methods for creating HED plasma
conditions

e lon beams
@ Isochoric heating with proton beams

e X-ray heating
REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 2 FEBRUARY 2002

Development of a Bi* high current source for heavy ion driven plasma
generators

M. Galonska,® K. Volk, and U. Ratzinger
Institut fiir Angewandte Physik, Universitat Frankfurt, Robert-Mayer Strasse 2-4,
60054Frankfurt/Main, Germany

(Presented on 6 September 2001)

The development of a high current bismuth ion source is motivated by heavy ion driven fusion
(HIF) and is part of the ¢ pgynioaq Sign of a HIF-relevant Bi* test injector with four beamlets,
which could serve as a HIF aniver ront end element. Envisaged is the develonment of a 300 mA Bi*
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There are other methods for creating HED plasma
conditions

@ lon beams
@ Isochoric heating with proton beams

e X-ray heating
SCIENTIFIC
REPORTS

natureresearch

W) Check for updates

Focussing Protons from a Kilojoule
Laser for Intense Beam Heating
using Proximal Target Structures

C. McGuffey'®, J. Kim?, M. S. Wei?, P. M. Nilson®, S. N. Chen*®, J. Fuchs*, P. Fitzsimmons?,
M. E. Foord®, D. Mariscal™*, H.S. McLean?®, P. K. Patel*, R. B. Stephens? & F. N. Beg*
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There are other methods for creating HED plasma
conditions

@ lon beams
@ Isochoric heating with proton beams
e X-ray heating

VOLUME 84, NUMBER 2 PHYSICAL REVIEW LETTERS 10 JANUARY 2000

Detailed Measurements of a Diffusive Supersonic Wave in a Radiatively Heated Foam

C.A. Back, J.D. Bauer, O.L. Landen, R.E. Turner, B.F. Lasinski, J.H. Hammer, M.D. Rosen,
L.J. Suter, and W.H. Hsing

Lawrence Livermore National Laboratory, L-21, P.O. Box 808, Livermore, California 94551
(Received 11 August 1999)
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.
Who studies HED plasmas and why?

e National Nuclear Security Administration
e Science-based stockpile stewardship ensures a safe, secure, and effective
nuclear stockpile

e Other funding agencies like the Department of Energy and the National
Science Foundation also support HED plasma physics

e Understanding HED plasmas is very relevant to inertial confinement
fusion research

e Astronomers and astrophysicists use results from HED research to better
understand observations

e It is fun to play around with some of the most extreme material in the
universe in an earth-based laboratory!
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.
Diagnosing HED plasma experiments is challenging
due to the large densities

e The large densities and temperatures and the small spatial scales mean
that probes can’t survive the plasma environment

e It is necessary to use optical, x-ray, neutrons, or charged particles signals

e This can be self-emission or as an external probe
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X-ray radiographs show what the plasma is doing

Y target coord. (mm)

e Gives you a relatively intuitive picture of what
is happening in the plasma

e It is useful for observing hydrodynamic motion
or any contrast in absorption

Y target coord. (mm)

e This is very relevant to how astronomers
observe the universe

o ¢
BN

Y target coord. (mm)

e
&

1.0 15 2.0
X target coord. (mm)

E. C. Harding PRL 103, 045005 (2009)
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.
Emission and absorption spectroscopy provide an
immense amount of information about your plasma

e Emission spectroscopy measures the excited
states in the plasma

e Absorption spectroscopy measures the lower
lying electrons in the plasma

@ These techniques provides information on the
plasma temperature, density, ionization,
velocity, and gradients

e This is also very relevant to how astronomers
make observations
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Proton radiography probes the magnetic field structure
of the plasma

[ High-field (13.5 T)
u\[E Taor ot | / e
(Use e~ Sletn “c. e by : i
e Usés a proton beam to pass through the
plasma that then gets recorded on film

@ A short pulse laser or capsule implosion
produce the proton beam

@ The Lorentz force deflects the protons, which
provides information about the magnetic field rft

-

J. M. Levesque Phys. Plasmas 29; 012106 (2022)
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Charged particle spectrometers observe the emitted
spectrum of particles accelerated in an experiment

(a)
' Electron

-
* Positron Proton

@ Measures the number of particles as a function ;
b
of energy -

10 ps laser; Au target (1mm x 2mm dia)

Black - 247 J
Green - 800 J
Red - 1500)

e Useful for finding temperature of accelerated go’
particles £
10° 4

e Provides information on the charge of the e 2

Energy (MeV)

particles based on the direction of deflection

H. Chen Physics of Plasmas 22, 056705 (2015)
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Great! But what can we do with plasma in these
states?

e Radiation hydrodynamics

e Hydrodynamic instabilities

e Magnetized plasmas

e HEDP material science

e Laser-plasma interactions

e Laboratory astrophysics

@ Inertial confinement fusion plasmas

. QED
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Laboratory astrophysics produces an analogue of an
object in space in the laboratory

e This can be a scaled system so that the equations describing both are
identical

e One needs to make sure the microphysics is also in the same regime
e Example: Hydrodynamics experiments scaled to supernova remnants

e Experiments can also be at the same temperature and density conditions
as the astrophysics object of interest

e Example: Iron opacity experiments at the conditions of the solar
radiative-convection zone boundary
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Kelvin-Helmholtz instability experiments study the
effects of vorticity on the evolution of an interface
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Iron opacity experiments study material properties at
the solar radiative-convection zone boundary
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Magnetized bow shock experiments study the behavior
of the earth’s magnetosphere
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J. M. Levesque Phys. Plasmas 29, 012106 (2022)
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Pair production experiments aim to study relativistic
jets relevant to gamma ray bursts

Short-pulse laser
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electrons \
‘\_ . X / 10 10 ps laser; Au target (Tmm x 2mm dia)
Positron/ion T ¢ . Black - 247
Acceleration £ + g— I )0-15 C r’éii”&?ﬁﬁf
+ 2
b 3
Au 2
Target ]
S
3
z
EPPS-3

Step Wedge Filter

Energy (MeV)

H. Chen Physics of Plasmas 22, 056705 (2015)
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Summary

e HED plasmas have pressure larger than 1 million atmospheres
e This covers a wide range of temperature/density parameter space
@ This leads to nonideal plasma behavior

e HED experiments study many topics using a variety of drivers

Heath J. LeFevre (hjlefe@umich.edu) HED plasmas



Think about the University of Michigan for graduate
school! There is a lot of plasma physics research here

@ There is a good overview of the plasma research at UM at
https://mipse.umich.edu/research.php

e Topics include (Covering theory, experiment, and computation):

HED plasmas

low temperature plasmas

Plasma thrusters

Space and astrophysical plasmas

Accelerators and beams

Plasma transport
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