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Fusion research is tackling transformational technologies

to provide alternative, carbon-free electricity generation
Lab research conducted via:

e Heating and confinement of a
plasma of hydrogen isotopes via

magnetic fields — magnetic
confinement

Moser's and Paul’s lecture

e Heating and compressing
via lasers a fuel target of

oy GHpemcle hydrogen isotopes — inertial
@\ Fusion confinement ; > taeier;s
@ Malko's and Kritcher's lecture BN e 7
S 5 -
S—

D+T — a(3.5 MeV) +n(14.1 MeV)

Let's take a closer look at MFE plasmas.
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Fusion Plasmas: nonlinear phenomena really hot or really fast,

hard to diagnose, lots theory & exp data, not so easy to bridge

Tpe TA TDPRF TCQ TE  Tskin
' t Turbulence ! | i '
| 1 | } | | | |
Time [s] 10712 i 10710 1()I*8 i 1076 104 I 1102 L1000 102 «— K. Montes (MIT), PhD Thesis, 2021
& ! : ! : : Y : 1 -
- : [ : : I :i : | [ : ] : 1 I - and
I i i i 1 i Transport i
T 1

! |

! I

: I

| MHD Stability |—!
Tee Tei  TMHD T Ty

Challenges in thermonuclear fusion simulation:
“The tyranny of scales”

T | L. Chacon 2022 ICTP-IAEA School

Fusion plasma dynamics ELECTRON TANSIT. rummurance B R somia o Slectronion
. . d f Q - mLH'I. o) :1‘ lTA ISLANDlGROWTH CURRENT DIFFUSION P mfp

spanning wide range o Tor 104 1060 104 102 100 0 10 s i

spaftial and temporal scales = i S e

tearing length

Not so easy to develop first
principle solutions!

ion gyroradius

debye length

electron gyroradius
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A T e
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/
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6 Fusion primer (a) RF codes turbulence codes MO ccdes (d) Transport Codes 106 104 102 100 1Q2

\.
20 1 0 10 20
X ()




Many operating experimental devices for magnetically confined

fusion research, more planned!

Huge amount of experimental
and simulation data available
enabling Machine Learning
applications:

Stellarators/Heliotro.. Laser/Inertial

Q  optimization of
experimental design

d  real-time monitoring of
proximity to instability

Q  trajectory planning
optimization

Under construction Planned Public Private

7 15 69 ~ Q  fast surrogates to
accelerate simulations

IAEA Fusion Device Information System
https://www.iter.org/of-interest/%244
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Many operating experimental devices for magnetically confined

fusion research, more planned!

Huge amount of experimental
and simulation data available
enabling Machine Learning
applications:

Stellarators/Heliotro.. Laser/Inertial

Q  optimization of
experimental design

real-time monitoring of
proximity to instability

Q  trajectory planning
optimization

Planned Public Private

7 15 69 ~ Q  fast surrogates to
accelerate simulations

IAEA Fusion Device Information System
https://www.iter.org/of-interest/944 3
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Active monitoring and prediction of soft/hard limits necessary

to inform transition across operational boundaries

] Asynchronous
: Conhlnuous : y ; : DMS
1 : . trigger
Controlled Stab. Limit 1 Sl
Plasma | B v/ g W\ A ™1\~ DOrigina
Parameter Nominal Regulate Catch & Return to N Target
(. 8. 1,, etc.) scenario Perform.  Subdue - target if stable S R
- - I
Control Regimes: Conhnu.ous Asyr.wchronous Eme.rgency
Prevention Avoidance Avoidance

Adapted from J. Barr IAEA TM PDM 2020

Interpretable/explainable data-driven
models provide general proximity to
unstable operational space
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Plasma pushed close to operational limits often leads to

instabilities onset or control faults: disruptions!

Alcator

)Cyﬂod =

keV
o = NO

MA

keV

MW

m

- N
o o Peo
OO ONONO U1 OO — NO
T T T T T

kA

ZOR!
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Te(0) 7

RN

P

rad

Z

centroid]

{2

= 15
Iholo 2

2

0.723 0.725 0.727 0.729

Time (s)

Major disruption — final loss of control
evolving on timescales of milliseconds:

e Fast drop Ip leads to loss of confining poloidal
field.

e Fast IIO transient causes large induced voltages,
currents, forces.

e Rapid thermal losses cause surface damage.
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Plasma pushed close to operational limits often leads to
instabilities onset or control faults: disruptions!

¥

:\
N N rame = 357 | £ o 1 :
. LA A |
» D) . Time 1.978 —
‘»\ . % . v :
\

Visible camera view of RE beam hitting Alcator JET runaway electrons damage.
C-Mod first walll. Courtesy R.A. Tinguely https://www.iter.org/newsline/-/2234

How to take care of disruptions:
e Accept the damage and live with it.
e Mitigate the damage by injecting massive gas or shattered pellefts.
e Avoid altogether by detecting precursors & steer plasma away from disruptive boundary.
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Precursor’s growth prediction and detection extremely

important...

el Plasma current (MA) | Pulse 13505 _

| precursor\
I growth
LG F"

TN o e —1J 1 \ \ \ | <
Electron temperature (keV)
(from ECE, data smoothed)

themal
quench

current
quench

10

0.0
Vioop Voltage (V)

50

10.51 10.52 10.53
Time (s)

ITER Physics Expert Group on Disruptions, Plasma
Confrol, and MHD (1999) Nucl. Fusion 39 2251
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...but not an easy task!

Statistical studies show complex chains of events:

e Similar statistical studies not
- always available across

-« | _g differem- tokamaks.
> e Need timely identification of
— e precursors to allow the plasma

STOP

control system (PCS) to take
proper action.

ML —

RC

MHD

L - > Wealth of experimental data from
TS Ly different tokamaks enables
UFO; > - Machine Learning applications.
[~] o
ITB PRP) @ —

Statistics of the sequence of events for ~10yrs of unintentional disruptions at JET:
width of the connecting arrows is the frequency of event occurrence.

13 De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET” C.Rea | PPPL Fusion Intro | 6/15/23



Explainable ML models for disruption prediction useful

resources to identify stability boundaries in real-time

e DIII-D/EAST: the Disruption Prediction via Random Forest algorithm (DPRF)
applied to compute the probability of an impending disruption,
while interpreting its drivers in real-time.

#175552
1.6 , : : : 1.00
__ 3l p NN L0752
< s
= 08| DHI-D 10508
Smooth disruptivity probability >
=04 1025 &
©
2% - 0.00
£5 260f ,
20 200,
£ E 140
8% S i )
2 0.8 — disruptivity o
w2 locked mode | .. table features f " 2
hatll =} o 5 pretabie reatures Tor contro c
S 3 04} q2 =
‘6 = ) - n/nG 2
&8 : =)
e W, o
3.50 3.75 4.00 4.25 =
time [s] R

C. Rea et al, Nucl. Fusion 59 (2019) 096016
C.Reaetal, 2021 IAEA EX/P1-25,
I4  J.Barmretal Nucl Fusion 61 (2021) 126019 C.Rea | PPPL Fusion Intro | 6/15/23
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3. Explainable and adaptive ML models — applications in Fusion
4. Current challenges and opportunities for future research
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Sometimes there’s confusion about terminology,

oo many buzzwords!

Artificial

Intelligence

Machine
Learning

Deep
Learning

16 Intro and fundamentals

Adapted from medium.com/@StepUpAnalytics

To mimic human
behavior and functions
such as learning and
problem solving.

asimov

Al subset using statistical FouREEE

methods to enable
learn-from-experience
paradigm.

ML subset with
broader generalization
capabilities —

neural networks.
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From biological to artificial neurons: the computational graph

inputs
one
neuron

layer activation
Jx)

dendrites

y
output
weighted sum:

fx) = wix

soma terminals

Credits: M. Kuchera ®
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From biological to artificial neurons: the computational graph

one
neuron

layer activation
Jx)

dendrites

y
output

weighted sum:

fx) = wix

soma terminals

Credits: M. Kuchera ®
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The Universality Theorem: for any arbitrary f(x), there is always an

artificial neural network that can approximate it

y = f0) =fOSfIASfOfNx)))) Caveats

A e Increasing the depth can
: improve the approximation.

ly-f(x)[< €

output, y

output layer

e Activation must be continuous.

layer 3
z =
()
layer 2 g :° Neural networks provide nonlinear
layer 1 > mapping from inputs to outputs, or a
way to represent your data through
function approximation and
estimation.
input, x
Width  s=ssssssssssssssnsnsnnnnnnnns >

Deep neural network example, adapted from B. Spears et al PoP 2018
19 Intro and fundamentals C.Rea | PPPL Fusion Intro | 6/15/23



Statistical inference to learn representations from available data

generate

hypothesis
: o

® |

S —

new scientific
knowledge

Existing challenges in
evaluating the
mapping adherence
to ground truth for ML
models

/

The process of
Statistical
Inference

build statistical : @
ol

model
collect

data —

20 Intro and fundamentals C.Rea | PPPL Fusion Intro | 6/15/23



Statistical inference to learn representations from available data

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

build statistical

hitps://xkcd.com/1838/

21 Intro and fundamentals

new scientific generate
knowledge hypothesis

The process of
Statistical
Inference

model

collect
data
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https://xkcd.com/1838/

Infroducing the black box:

the issue with high-stakes decision making ...

inputs

- @

22 Intro and fundamentals

outputs

. y= f(x)

Black box as either
e function too complicated for
human to comprehend or
e function that is proprietary

C. Rudin, Nat Mach Intell 1, 206-215 (2019)

Implications:
e lack of transparency and
accountability,
e froubleshooting challenges.

High-stakes decision making:
e healthcare,

criminal justice,

child welfare screening,

self-driving cars,
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High-stakes decision making and the parallelism with

the fusion context

Fusion energy systems:
Any ML-based decision needs to be trusted and

inputs outputs justified, or licensed — high-stake decisions!

- @

y= f(x

Science discovery —
Reconciliation with physical
understanding, key ingredient
to advance fusion research.

explainable
predictions

VS
D. Humphreys et al, 2020 Advancing

Fusion with Machine Learning
Research Needs Workshop Report,
J. Fusion Energy 39 123-55

interpretable
models
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24

Fusion stuff and disruptions!

2.  The Universality theorem and brief ML taxonomy

[3. Explainable and adaptive ML models — applications in Fusion ]
4. Current challenges and opportunities for future research

5.  Conclusions

THE SIMPLEST
EXPLANATION 1S
THAT OCCAM
SHAVES THE
BHRBER.

)

hitps://xkcd.com/2541/
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https://xkcd.com/2541

Common perception of accuracy vs interpretability frade-off

A
- O-
> deep O ~
g learning O U\\Q
=] random -~
8 forests O O\ OSVM
< o*
< Q O
yeol O\ decision
g Q trees
@)
\
\

Model Interpretability
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More interpretable and simpler models can be as accurate as
black boxes

fictional frade-off

Model Accuracy

Model Interpretability

26 Explainability vs interpretability
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More interpretable and simpler models can be as accurate as

black boxes

No unique “interpretability” definition:

N fictional trade-off ) o
e |[t's algorithm dependent — e.g., possibility to

inspect reasons.

e It's domain dependent — e.g. sparsity not
good for natural image classification.

decision
frees

Model Accuracy

\
\

Model Interpretability
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More interpretable and simpler models can be as accurate as

black boxes

fictional frade-off

Model Accuracy

\
\

decision
frees

Model Interpretability

28 Explainability vs interpretability

No unique “interpretability” definition:

e It's algorithm dependent — e.qg., possibility to
inspect reasons.

e It's domain dependent — e.g. sparsity not
good for natural image classification.

What about accuracy definition?

True Positive Rate

e Typically well-defined — o
e.g., counting statistics
of misclassifications,

root mean squared error,

count

1
v True Positive
True Negative

Misclassifications:
False Negatives and False Positives
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ML systems’ prediction accuracy measured on new test data ...

Simplified supervised ML classification workflow:

2D example (blue vs red)

DATA

ot

HumAN
LABELING

29 Explainability vs interpretability

Learned mapping, or

outputs

y = fix)

boundary between classes

S\ﬂ
P 7”7

Adapted from A. Pau et al,
Nuclear Fusion, 59(10):106017, 2019

—

TEST
|:> DATA

PERFORMANCE
EVALUATION

X

2
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30

... by counting how many times the trained classifier is right or

wrong!

better classifiers

1
2 $ o 2
O , 7
o< Did 77 S
(V] g A \)e‘a
> -, e g
£ 7 7
3 L4 /(\éo
o P QO
o -,
2 |.”7
—

0

False Positive Rate !

count

v True Positive
True Negative

Misclassifications:
False Negatives and False Positives

True Positive Rate:
# correct positive classifications

total # of positive samples

False Positive Rate:
# wrong positive classifications

total # negative samples
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ML models of varying complexity can have comparable

performances - a disruption prediction example

Classic ML OD

\ Deep Learning 1D
/

y=

1.0

e Rashomon Effect:
a multitude of models with approximately

0.8 i R poeee 1 the minimum error rate exists, for many
g | | | | | ' roblems' (also in Fusion!).
® o6l Deep Learning 0D P ( )
(] i T : : " . oy e
2 [ : As long as a large Rashomon set exists, it is
8 gall i likely that some are interpretable??,
@ ' maybe hard to develop.
= : X . ' ] ;L. Breimon et al, 2001 Statistical Science 16 199-231
0.2¢4 S i S & DIl-D C. Rudin et al., 2022 Stat. Surv. 16 1-85

" NamOwAL Fusion FaciTY ] 3Semenova et al, 2022 ACM Conference on Fairness,
; 1 Accountability, and Transparency (FAccT'22) arXiv:1908.01755

0. | ; .' .' '
%.O 02 04 06 08 1.0
False positive rate

Adapted from J. Kates-Harbeck et al., Nature 568, 526-531 (2019)
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ML models of varying complexity with comparable performances

e Rashomon Effect:

a multitude of models with approximately
the minimum error rate exists, for many
problems' (also in Fusion!).

Fun fact:
Roshomon ferm As long as a large Rashomon set exists, it is
inspired by 1950 . ) 03
/ : likely that some are interpretable=-,
Kurosawa's movie!
maybe hard to develop.

'L. Breiman et al, 2001 Statistical Science 16 199-231

2C.Rudin et al., 2022 Stat. Surv. 16 1-85

3Semenova et al, 2022 ACM Conference on Fairness,
Accountability, and Transparency (FAccT'22) arXiv:1908.01755

https://en.wikipedia.org/wiki/Rashomon
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Models interpretable by design vs black boxes that can

be “explained”

—— existing dichotomy ——

- Ensemble methods,

e e sl - Convolutional Neural Networks,
b Z . Vs Black boxes - Recurrent Neural Networks,
y aesign - Autoencoders,
A -
- A
- Dimensionality - Physics .
Reduction Informed why did we get — post-hoc explainability
. Neural the output we got?
Networks explanation by
simplification feature additional
P relevance models ...
N\ N\
linear surrogates, ... saliency maps, ...
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Models interpretable by design vs black boxes that can

be “explained”

—— existing dichotomy —— (Ensemble methods, |

[ariaaesllE - Convolutional Neural Networks,
prek Vs Black boxes - Recurrent Neural Networks,
by design - Autoencoders,
AN -
- A
- ( Dimensionality] - Physics .
[Reducﬁon ] Informed why did we get — post-hoc explainability
. Neural the output we got?
Networks explanation by
simplification feature additional
P relevance models ...
N\ N
| linear surrogates, .. saliency maps, ...
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Dimensionality reduction (DR) enables inspection of dataset

structure

m Dataset of handwritten digits represented
EE through different embeddings in latent space.

HEGR 0

PCA t-SNE UMAP PaCMAP

Classes

-t ; )

e

e

C. Rudin et al., 2022 Stat. Surv. 16 1-85

O O NV B WNMO

e Latent space (no physical units) allows 2D visualization of similar data points in
high-dimensional feature space. Coloring done a-posteriori!
o All DR methods allow some form of data inspection and understanding.
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Clustering algorithms enable discovery of data patterns

i A e T.-SNE clustering of C-Mod disruptive vs non-disruptive
e 2 time sequences.

PCA clustering of two different performance regimes for
three different tokamaks.

=~

(] -=<
7 o N -
y \ - S T
i i N t \ \ e e L L5 TINN
1 \ N [ By / [ : AN
[ \‘ ,/ \ |‘ "‘_\\ ’ 1 l' N \
' v/ Vo 3 / 1 b 3 AR
P &%\ i L A N ol "3y \
¢ gt b v P \
Las. ' L vy o 20 \
1 Vs [ [ B \
1 e [ L ;I |
(o1 Iy (B [ } - 1
Y L [ I 11 !
1 Iy (W oy RS 1
L DA vy SRl ! % Lo !
! ,' ! N ‘& ‘| \ 4 VOt ,' 1 ’ !
. .. LT e h /I Ey ¥ v k / \ et 5 /
Coloring done a-posteriori! i , s vy s g D L4l )
i oy / \ P IS¢ _- 1 ,
%to’ Il Ad AN \‘ “ g -—- l| ooy L’
; S .
C-Mod ! - D=-D - 4y 1o b
3 PP NATIONAL FUSION FACLTY =T v 1034 e =
_______ -
J.X. Zhu, C. Rea et al, 2021 Nucl. Fusion 61 114005
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37

Explainable ML predictions for real-time proximity to instability —

a Random Forest example

1.6 #175552
M .4
<
= 08| DHI-D
a Smooth disruptivity probability
= 0.4}
=y
535 260}
2o 200}
£ £ 140} .
Y v gg|l — disruptivity
g'g : locked mode Interpretable features for control
g8™ n/nG
& B
S 0.0
)

3.50

3.75 2.00 4.25
time [sl

C. Rea et al, Nucl. Fusion 59 (2019) 096016
C.Rea et al, 2021 IAEA EX/P1-25,
J. Barr et al, Nucl. Fusion 61 (2021) 126019

Advantages:
|dentification of stability boundaries in real-time.
Local explainability metrics leveraged inside controllers to modify plasma trajectory in real-time.

stable unstable

[ Plasma state

g

X

Disruptivity

Adapted from: *Random Forest
Regression,” levelup.gitconnected.com

C.Rea | PPPL Fusion Intro | 6/15/23



Identification of safe operating region through fast ML

enables trajectory planning

- .
bHI-D fime >~ m
DIII-D Shot = 180808, Time = 5.000s DIII-D Shot = 180808, Time = 5.150s DIII-D Shot = 180808, Time = 5.160s
: : P Ko Q 3.2 80 08 ke
GOt B ¢ 3 ; a P R
o o '.

035 N\ high danger

0.30

_ . ML simulations
4 5 5 .
g 3 F . evaluated by sampling
E : s from 2D operational

0.1 . . .

regime variations
0.10

o5 safe region

HPORQ "~ Fo B

-0.60 -0.60 — 0.00
-0.50 -0.38 -0.25 -0.12 0.00 0.12 0.25 0.38 0.50 -0.50 -0.38 -0.25 -0.12 0.00 0.12 0.25 038 0.50
Alp[MA] Alp [MA] Alp[MA]
N . o . DIII-D shot 183246
e Goal: leverage ML-driven optimization to °°] e
identify trajectory across operational space Zo4] : ;‘-M\\\%
. . 2 03] Sl R o oAl o
and in real-time control systems. ;zj_wM g
o Operating point optimized (Genetic 011 =
A|gor|1'hms) via convex set Of linear 0% 41 42 43 44 45 48 47 48 l:za,o 41 42 43 44 45 46 47 48
. . . 125 — g -
constraints to calculate disruption £ 100 — Aitend 1254 — extiizsd
.. F = 100 WW\H‘N_
proximity. 5 751 g ol ~
.2 5.0 < 504
§ 251 254
38 M. D. Boyer, C. Rea, M. Clement, Nucl. Fusion 62 (2022) 026005 e a1 a2 43 as 45 a8 a7 4z SO0 41 a2 a3 4 a3 48 a7 4o

Continued work by Z. Keith, C. Rea (MIT) Time [s] Time [s]
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Fusion stuff and disruptions!

2.  The Universality theorem and brief ML taxonomy

3. Explainable and adaptive ML models — applications in Fusion
[4. Current challenges and opportunities for future reseorch]

5.  Conclusions

THE DATA CLEARLY PROVES THAT—

ARE YOU INDIANA Jbll\lES?

BECAUSE. YOUVE GOT A
LOT OF ARTIFACTS THERE,
AND I™M PRETTY SURE.YOU
DIDNT HANDLE THEM RIGHT.

https://xkcd.com/1781/
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Data drives fusion experiments’ design, simulation, analysis,

control and optimization - enabling science discovery

Inner poloidal field coils.
(Primary transformer circuit)

PRO 4.a: RT Data
Analysis with ML

RT Sensor
(Magnetics, ECEI,...)

Actuators (NBI,
ECH, Coils,...)

Plasma electric

ma electric current Toroidal magnetic field
(secondary transformer circuit)

Plasma Real-Time
Control System

PRO 4.c: Trajectory and
Control Design with -
ML

- 1

ML Labeled Events
from Diagnostics

Request by the
Physicist:

Data-based Models

- Physics-based Models

Performance and
Stability to
Optimize

PRO 4.b: Development

of Control Models
with ML

Adapted from D. Humphreys et al. *Advancing
Fusion With Machine Learning” DOE Workshop (2020)

e

Data Analysis

Experiment Numerical

Models

Data-driven
Models

Experiment

Hypotheses

D. Humphreys et al. “Advancing Fusion With
Machine Learning” DOE Workshop (2020)
Pilot plants and next gen devices need
robust models featuring
e interpretability/explainability
e well-defined validity and extrapolability
boundaries
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ML requires large datasets with target events labeled

Typical Workflow:

DATA PREPARATION

~ 103 — 10* shots

DATA
PROCESSING

FEATURE
EX‘IRG‘CT ION

ENGINEERING

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

T S —

SN U U

REINFORCEMENT
LEARNING

MACHINE LEARNING MODE

—_

UNSUPERVISED LEARNING

DATA-REDUCTION
CLUSTERING

!

SUPERVISED LEARNING

CLASSIFICATION

= -

REGRESSION

PROB. ESTIMATION

CROSS

MODEL
VAUDATION || T pramerer
DA TUNING

A. Pau et al, Nuclear Fusion, 59(10):106017, 2019

PERFORMANCE
EVALUATION
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Labeling events often requires manual inspection of multiple

signals: semi-supervised ML accelerates event labeling

Partially Labeled Event Data

. . Human Expert
Diagnostic Data ~

Some shots analyzed I }

Use dlagnostlc S|gnals to
identify events

* Common signals from many shots
* A fraction (at least 1 shot) has labeled
event occurrence

*  From MDSplus, etc.
*  Many (~ 103%) shots

*  Record times at which event Semi-Supervised Learner
occurs .
* Validate ‘learned’ event e Use unlabeled data
detections distribution to find
: other events
* Qutput times when
N\ event likely occurred
Courtesy: K. Montes (MIT) dissertation (2021) R ) N  Rea | PPPL Fusion Intro | 6/15/23

42



Semi-supervised label spreading algorithm to automate

detection of physics events

Rotating mode locks (rotML) Core radiative collapse (coreRC)
rotML coreRC
10 T T T Iu--. 1 10 E T T T .-ul..w.'.a L] T
£ 06 I . 0.6} . | i
T 0.4} : . 0.4} N . |
0] 1 o o |
£ 02t : . 0.2} n i o =
0.0 d 0.0k sevevees® | | ® o0 0n |
2.5
= 2.0 ]
Q
& 1.5 g
3 1.0 .
o 0.5 ]
0.0
— 2 3.0
C
o —
= fé 2.5 g
W & 2.0 |
& £ 1.5 1
Z kt)a 1.0 &
-0 2.4 3.2 4.0 & 95
3.24 . : : | 2.5 : J ; :
3.18} . _ 20} ' il
S |
w 3.12 1 ! ] v 1.5 | 1
o 3.06 I = |
: , . 3 1.0} .
3.00f I 1 F 05l , i
2.94 - L L 1 0.0 . | | 1 )
2.4 3.2 4.0 1.6 2.4 3.2 4.0
Time [s] Time [s]
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Can be applied to accelerate the construction of events

databases

* |teratively choose initially labeled shot from set of marginal detections
* Prediction quality on unlabeled shots improves consistently
* Detected eventsin ~ 85% of hundreds of shots after manually analyzing just ~ 1%

1% iteration 2" iteration 3 iteration
. i ‘ rotML 10 ‘ ‘ ‘ roFML 10 ‘ ‘ ‘ rUIIVI.L

1.0 e
! ' c 08 1e
08| 1 0.8} . 1 ST =
5 el | TPR=50% | 15 o marginal , S ool | TPR=185% L
= 06 + 0.6 - B = 20,
S, 1 FPR=0% i £ . missed _— . 2 .| FPR=2% i
a4l af S 0.
(7] I Q . 1
& 02l ! £ o2l detection : !
ool i
1.
_ 125
9, 10,0}
g 75|
£
< so0f
2 25
= 2
0.0 X
1.6 2.0 2.4 2.8 3.2 3.6 1. z 2 k ; 6 1.6 2.0 2.4 2.8 3.2 3.6
16 : : : . 3.20 | _ 16 — 3.20
2 1af 1315 S sl 3.15 9 15l | {315
I 1 —_
< - 1 - : = : 3.10
Tog des (right scale) ! 310 o g Qqes (right scale) ! 310 » g Qes (right scale) ! 9
o | 1305 @ o . 305 © ) g {305 &
= 4 ; {3.00 s 4 ) 3.00 = 4r J {3.00
= | %
0 . . . 1 2.95 0 . . . L 2.95 0 L L L e 2.95
1.6 2.0 2.4 2.8 3.2 3.6 1.6 2.0 2.4 2.8 3.2 36 16 2.0 2.4 2.8 3.2 3.6
Time [s] Time [s] Time [s]
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Data augmentation to learn disruptive dynamics (l)

Training __ | Preprocessing

data

0.5

—0.51
0.5

—0.51
0.5

X 0.01
—0.51
0.51
0.0 1
—0.5+1
0.5
0.0
—0.5'

q95

n/ng

Y

State space
Student-t
surrogate model

Z

Training data

\

X 0.01

rasscso= o

495

}
gé |
n/ng |

225 2.50 2.75 3.00 3.25 3.50 3.75

t[s]

2.25 2.50 2.75 3.00 3.25 3.50 3.75
t[s]

» Post-processing ——> Analysis

DL models are data-greedy:
need comprehensive
training database to
achieve satisfying and
reliable results.

Robust augmentation of the
training database using
state space Student-T
surrogate models.

Rath, (...), Rea et al, “Data augmentation for

disruption prediction via robust surrogate models”
J. Plasma Phys. (2022), vol. 88, 895880502
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Data augmentation to learn disruptive dynamics (ll)

11 AYAVA

=

e random time warping 5 times in parallel,

e random crop subsequences with length 300,

e random quantize to 10-, 20-, or 30- level sets,

e with 80% probability , random drift the signal up to 10% - 50%,
e with 50% probability, reverse the sequence.

46 L. Spangher, C. Rea et al 2023 C.Rea | PPPL Fusion Intro | 6/15/23



Predict “time-to-disruption” risk using classification probability

1140226013

Iva

Alcator
N T )Cjﬂod

/

47

S(t+At|t)

h(t+At|t) [1/s]

Any classification probability (P,) cast between [0,1]
can be used to:

e Predict the future probability of
plasma survival S(t+Ar]| ) [1]

or
e Model the instantaneous hazard [2,3] h=d InS/dt

to be used as probability generator.

Hazard function modeling connects dynamical systems
and risk-aware conftrol design by probability generation.

C-Mod data used as proof of concept to combine DPRF
(or any classifier) disruptivity with survival analysis.

[1] RA Tinguely et al 2019 PPCF 61

[2] KEJ Olofsson et al 2018 PPCF 60

[3] KEJ Olofsson et al 2018 FED 146
Continued work by Z. Keith, C. Rea (MIT)
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Hybrid Deep Learning predictor for cross-machine disruption

prediction using time series data

[ Plasma state ]

lL black box

MSTConv

¥
MSTConv 1D conv 1D conv 1D conv 1D conv 1D conv
L=1 L=2 L= L=4 L=5

_GRU_ | S -
_eRu

L=6

Concatenate

Batch
normalization

\i RelU \

MSTConv

Fully
connected

Classification

1D conv

disruptivity

-

0.5

not enough time:
J.X. Zhu, C. Rea et al, 2023 Nucl.
Fusion 63 046009

C-Mod shot 1120814006

---------- Alarm Threshold - -I! 5L

Point
. =52ms

nnnnnnn 0.5
t disrupt
M ‘ ‘ ‘ ‘ i 0
0.5 0.6 0.7 0.8 09 1 11 1.2 1.3
time/s



Adaptive strategies designed to optimize predictions across

different fusion devices

predictors to different operational 1 Task: predict Dill-D HP
regimes across devices (DIII-D/EAST). FPR =01

e Implications for next-gen, yet-to-be-built
devices! 0.7

e Adapt current state-of-the-art ML

e Adaptive strategies:
o ad-hoc design of training sets to I:>

Training sets:

True positive rate
o
(3]

. 0.4 '
match target domain by fully snr-p  — pui-pLp
exploiting existing data', 03 bm-p q}@ — DIII-D LP + EAST HP
o retrain predictors after 0.2 . o
) Other combinations
performance degradation®. -y

002 0.04 006 008 01 0.12 0.14 0.16 0.18 0.2
Adapted from 'J.X. Zhu et al, NF (2021) 114005 False positive rate
2J. Vega et al., Nat. Phys. 18, 741-750 (2022)

[ Domain adaptation ]
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Existing current challenges in ML-applied research @ but

also (!) opportunities for future scientists &

e trustin performance metrics — missing benchmarks

e frustin predictive output and learning — model interpretation and explanation accuracy
e prediction of out of distribution samples — domain shifts, data shifts

e integration with legacy architectures — real-time vs offline implementations

e lack of labeled data or of reliable (and automated) metadata extraction

e uncertainty quantification Y unesco]

e open and FAIR (!) access to data and models

M. Wilkinson, et al. The
FAIR Guiding
Principles for scientific
data management
and stewardship. Sci
Data 3, 160018 (2016)

N o enaation b Fusion Intro | 6/15/23
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DOE and International Agencies sirongly support ML

research to accelerate Fusion progress

Workshop on Advancing Fusion with Machine Learning

e 2019 DOE-sponsored workshop |::> Priority Research Opportunities (PROs)
critical PROs identified Accelerating Science Enabling Fusion Energy

PRO 4: Control Augmentation with ML
e DOE Public Reusable Research Data A T e ek

(PURE) initiative PRO 5: Extreme data algorithms
https://science.osti.gov/Initiatives/PuRe-Data

e |AEA Coordinated Research Project
addressing cross-cutting issues

Extreme-scale Processing,
In-situ Data Analysis

PRO 6: Data-enhanced Prediction
Prediction of Disruption Events and Effects,
Plasma Phenomena and State Prediction

D. Humphreys et al. *Advancing Fusion With
Machine Learning” DOE Workshop (2020)

Al for Fuéioh

5| https://nucleus.iaea.org/sites/aidatoms/ai4fusion/ C.Rea | PPPL Fusion Intro | 6/15/23


https://science.osti.gov/Initiatives/PuRe-Data

Summary and conclusions |I|"'

Plasma Science and Fusion Center

PSFC

1. Fusion science and technology advancements accelerated by ML

2. ML black boxes can be explained ‘_-! ‘

o and accuracy does not prevent interpretability! =

3. Enforce interpretability to reconcile with physics understanding

4. Fusion examples already out there employing
a. Interpretable algorithms
b. Explainable predictions
c. Transfer/adaptive learning and statistical optimization
d. Surrogate modeling for fast reconstructions

Long list of open questions and cross-cutting challenges, e D
but also opportunities for future research, enabling change in the field! K N

Reach out if interested in research opportunities at PSFC! crea@psfc.mit.edu Credits: S. Mordijck @

n
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Next generation devices will not allow disruption rate

> 1% at full performance

; Current Quench mitigation rate .
0.9}
@ 0.8} 0.4 )
S o7l 03 <«4— Thermal Quench &
Y mitigation rate =
06 0.3
= =
,_g 0.5} g'
©
0.4} 40.2
= Py
= 3l . ; 1 8
= i disruption rate == oy O
0.1} v T S 00 0% g3 ]
4 0.05 I S B 1 o, D10 —
> g N (4 | (4 I (4 I (/] » (4 (4 | (/] 0 - r 4
& 3§ § 3 S 3 § S I vy
\\&\ Q‘Q '@o @5 ’&o Q\Q '@o Q\Q ’@o @5 '&o §5 ,6‘0 Q\@ '@o @5 = . Y
R SV R0 GV (RGO VS R (o \e =
RS Q‘Q\%%,g\ 2 Q;;g\ QAT O OV S« I g
: B R S o o’ o’ o
S I R S
‘b?$ A% ,\‘9\& N ,\g)@vx (’§§ \"$ \°§\ ‘ ! 1
1

Lehnen M. et al 2016 “Plasma disruption management in ITER",
2016 IAEA Fusion Energy Conf. EX/P6-39
Reproduced at E. Strait et al Nucl. Fusion (2019) 112012
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A simple, interpretable, and accurate model *should* exist,

maybe (computationally) hard to develop

Supervised and inferpretable ML classification workflow: Adapted from A. Pau ef dl,

Nuclear Fusion, 59(10):106017, 2019

lterative process involving

subject matter experts to
achieve high interpretability
and performance accuracy
r 1

DATA PREPARATION

1

1

: DATA

1 PROCESSING
1

1

1

1

1

FEATURE
|:>. EXTRACTION
&
i ENGINEERING
1
RAW i PERFORMANCE  n, |NTERPRETATION
DATA : HUMAN EVALUATION
: LABELING

Interpretability constraints added in
model development include sparsity,
monotonicity, generative constraints
(e.g. laws of physicsl), ...

N
L—— PARAMETER

TUNING

CROSS
VALIDATION
DATA
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Examples of explainable models interpretable by design

[ Interpretable }
by design d  Physics Informed
Neural Networks

56 Explainability vs interpretability C.Rea | PPPL Fusion Intro | 6/15/23



Physics-informed machine learning seamlessly integrates data

and governing physical laws

e NN and AutoDiff allow to design models with partially missing physics (or datal)
o No need of domain adaptation or transfer learning.
o Strong generalization, by enforcing/embedding physics constraints.
o Can tackle high-dimensional problem:s.
o Can address uncertainty due to physics, data, and learning models.

Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics

57 G.E. Kamniadakis et al., 2021 Nat Rev Phys 3, 422-440 C.Rea | PPPL Fusion Intro | 6/15/23



Physics Infformed Neural Networks (PINNs) preserve

interpretability through physics constraints

e PINN learns partial differential equations (PDEs) given initial and boundary conditions (1&BC):

heat equation example.

PDE (v)
9
ot
9 ou _, o’u
ox* ot ox?

u(x, 0) - fix) initial and boundary
conditions data
-

physics
‘— informed «——

loss

58 Explainability vs interpretability

e PINN fraining minimizes the
PDEs residuals + 1&BC, through
combined loss function and
auvtomatic differentiation.

e No need of labeled data,
only generative constraints!

Adapted from:
C. Rudin et al., 2022 Stat. Surv. 16 1-85
G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422-440

C.Rea | PPPL Fusion Intro | 6/15/23



PINN solves heat equation and computes heat flux on the top

surface of W7-X divertor tiles

Gaussian top boundary condition .
constant in time (t € [0,0.1] S) E. Aymerich et al., PSI-25 Poster

Temperature at the surface | T T T T T

2000 . The PINN solves the equation and then computes the |
S 1500 . derivative on the top surface of the profile and estimate |
§ 1000 . the normal heat flux thanks to automatic differentiation: |
s q=-Vyu |
T e .

0
0.00 0.20 0.40 0.56
PINN Physics simulation Error
Lo les 0o [s] Lo JeB 00 [s] _— o [s]
— 0.8 1 & 08 g 038
b= £ z
§ 0.6 - E 06 5 061
::<> 04 - 5 04 S<) 04
T = 2
O O ::
IGE) 0.2 :<|1:.> 02 8 02 A
I
0.0 u T T T T 0.0 u T T T T 00 T u T T T
0112 0224 0.336 0448 0.56 0112 0.224 0336 0448 056 0112 0224 0.336 0448 0.56

osition along the profile [m] position along the profile [m]
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PINNs can accurately learn turbulent field dynamics consistent

with theory, and from partial observations

Partial observations of Te, ne

from one test discharge -ﬂ
Reference target solutions
4 \ ~

Ll E,(Vm) v>\
6

1.0
; 20,000 05
' 10,000 5
; ' -0. 5 > =05
A . . ; -1 0 —1.0
0 05 10 15 20 25 3.0

05 10 15 2.0 25 05 10 15 20 25 30
X (cm) J_L x (cm)

E (Vm™)
1.0

$(V) \

1.0 1.0 -376,700

0.5 0.5 20,000 0.5 -376,800

10,000

-376,900

-0.5 -0.5 -0.5

—1.0 —1.0 -1.0 -377,000
05 1.0 1.5 2.0 25 1.0 15 20 25 3.0 05 1.0 1.5 20 25
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A. Mathews, et al, Phys. Rev. E 104, 025205 (2021) PINN reconstructions
60 Explainability vs interpretability

o
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\/
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o
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o

y (cm)
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Physics-informed machine learning: current limitations

e Multiscale and multiphysics problems require further developments.
o High-frequency functions difficult to learn — F-principle or spectral bias.

e Pl ML involves highly non-convex optimization problems for complex loss functions.
o Need more robust algorithms and computational frameworks.
o Meta-learning techniques to automate the design of best architectures?

e Missing benchmarks on openly available datasets from physics, chemistry, ...

e More research needed on the theoretical foundations of NN.
G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422-440 and references therein
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Domain adaptation and transfer learning:

ML mapping from inputs to outputs, or learning to perform a task

Simplified supervised ML classification workflow: Adapted from A. Pau et al,
Nuclear Fusion, 59(10):106017, 2019

-——

outputs

y = flx)
\ LABELING / EVALUATION
\ ’ .
Se_ Learned mapping, or
domain = data + labels boundary between classes

or learning a task

e Mapping from inputs to outputs through ML systems means to learn to perform a task.
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Learning a task heavily depends on dataset composition

e Whatif the collected data is not an accurate reflection of the population?e
Too limited, not accurately labeled, ...
o Learning a general data representation by finding common embeddings of
source/target datal

Target L i
Knowledge domain % ! | / g
transfer !
— o Y JyJ¥W . s
( CAA ] Domain adaptation and transfer

Source ° .
learning designed to overcome

domain

| :_] ________ Ry biased dataset and/or generalize
2 J;v . 2 0 knowledge across different tasks.
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Data Augmentation: brief background

Varied Lighting Varied Zoom Varied Angle

L3

Ideal Conditions

Varied Occlusion Varied Focus Varied Style
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More (non-disruptive) examples:

65 C.Rea | PPPL Fusion Intro | 6/15/23



Temporal Convolutional Neural Network predicts confinement

probability Tms in the future

O o
BnTarget = 6 g
— Py L v
m- 4 €
Br S -
f(P(Mode = H)) Min. . = 2 -
- = =
el PJ&L% |:> 0
L 2
K, li, Bn
_ dr-sep, W, 4 E‘
P(Mode = H) a el =
,/ ~Ip, Ig, Pecy, Pop, AP, Diagnostics & 5
‘ T~ z
DIII-D Plasrha Control System Tl B feedback: e
" on vs off 2 4 6 2 4 6
/,' T Time [s] Time [s]
Heslimaled
Max Prob. =1 0 A 0
< e caution: limited
] B expert-labeled
2538 ‘ ‘ .
853 ; T dataset constraints
== 1 ime model applicability
P(Mode = L) = 1- P(Mode = H)

66 D. Orozco et al, IFEE TPS 2022 C.Rea | PPPL Fusion Intro | 6/15/23



Neural networks accelerate equilibria reconstructions and

profile evolution for shot planning and real-time control

caution: extrapolation
to never seen
equilibria or to other

a2¢ 1 a¢ a2¢ ) dp 1 dF? machines
_—— - = r

or?

N\ _ 204855:50ms

B-probes, flux loops, |:>
current measurements

15} F EQNET| ..
14 4 1+
Equilibrium

1/)(7“, Z) }I::> 05+ 1 05+

67

e NN learns free-boundary Grad-Shafranov solutions
and reconstructs tokamak equilibria. =

R[m]

204961: 790ms

Adapted from J. Wai, M. Boyer, E. Kolemen, Nucl. Fusion 62 (2022) 086042 C.Rea | PPPL Fusion Intro | 6/15/23



Gaussian Processes (GP) enable nonlinear simulations for

performance prediction and gyrokinetic validation

i pu=045 Standard BO workflow to find

i pn=055

i =065 steady-state profile solutions
. =075
. 5::035
Optimization
imulati [NO
Converge}nce '
Evaluation
lYES

P IS TR S [N TN SN TN SN (Y SO W'

= Few (10-20) simulations required to reach
convergence, thanks to Bayesian Optimization
(BO) workflow + GP surrogate modeling.

Surrogate

START - '
—> —

= Enabling profile predictions of unprecedented
accuracy for:

v Prediction of burning plasma performance
(e.g. SPARC)

v Validation of gyrokinetic codes (e.g. DIII-D)

P. Rodriguez-Fernandez et al, Nucl. Fusion 62 (2022) 076036

Open question:
detangle local

Residual

minima from
unique physical
solutions

68

7 — orignal fit
= CGYRO prediction
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C.Rea | PPPL Fusion Intro | 6/15/23



Raw ECE time series input data to Reservoir Computing Network

to compute Alfvén Eigenmode score

1.5 Example DIII-D Discharge

Separatrix
1.0

0.5

40 raw ECE signals

-0.5

-1.0}

ECE Channels |

=15}

1.0 15 2.0 2.5
R (m)

Jalalvand et al 2022 Nucl. Fusion 62 026007

Dili-D

NATIONAL FUSION FACILITY

69

Label
C
=<

Shot #178636
ECE #17

Time (s)

0 05 !'1 1.5 2
Time (s)

True Positive Rate: %91
False Positive Rate: %7

caution: how sensor
failures affect ML
workflow accuracy
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Decision paths in RF frees provide local measures of

explainability through information gain and loss

Feature vector example for inference
Vlocop q95 n/nG n_equal.l other  prediction

normalised features

-4.9 32 013 0.0002 ~ 0.65

Feature contribution breakdown

Prediction ~ 0.651 ~ 0.943 (bias term)
— m{‘ m“omz\‘ ~k’,'(3.005§‘\‘ (gain, Vloop)
{ Cheitsionpe J - 4 0.010 i(gain, q95)
value = [0.4006, 0.5994] ' !
S < —4).305/ (loss, n/nG)

N

value = [0.6513, 0.3487]
dass = non disruptive

_____

contributions,
or information
gain (+) and loss (-)

value = [0.6186, 0.3814]
dlass = non disruptive

Predictions for forest of M trees can be decomposed in the _— 1« bi (1 bk
(%) _M,Z; ias;, +Z MZ contrib,, (x, k)

n_equal_1_normalised <= 0.0003 | (
gini = 0.4718
samples = 0.0%

https://github.com/andosa/treeinterpreter, A. Saabas
A. Palczewska et al., Integration of Reusable Systems (2014).

i o6

K contributions from each evaluated input feature:

m—1



Source domain (simulations) allows to learn how to reconstruct

target data (experiments)

task: map from sim back to sim

e AN,

":"‘M' .

NN inputs:
simulation outputs

N

AAK)
PR
afshe

WA

e

compress data,
learn mapping

‘ 5 i»‘\«

_____ | g B4

’
a8

g

v
T

reconstruction of

.._______________ original inputs

task: retrain with experimental observations

71 Transfer and adaptation

Large datasets built through inexpensive
but possibly inaccurate simulations.

Networks (autoencoders) trained to learn
mapping between sim-to-sim inputs to
outputs.

Mapping then transferred to new task —
learning corrective transformation
mapping sim-to-exp — transfer learning!

Adapted from Humbird et al., PoP 28, 042709 2021

[Transfer learning ]
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Improving instability avoidance with

data-driven analysis of the “density limit”

e Density limit critical for ITER, but standard “Greenwald
Limit” not sufficiently reliable
e Our study identified novel equation

nedge

70.79
Tedge

—3.107°

outperforms Greenwald, other benchmarks, in
predicting density limit at DIII-D

e Expanding to multi-machine database

|
NATIONAL FUSION FACILITY

72 Andrew Maris, maris@mit.edu

Stable time phases
HDL precursor phases
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Disruptions modeled as Poisson processes with
characteristic time 1/disruptivity (1/s):

dAt k:e—dAt i
P(k disruptions in At|d) = ( )k:' ——> Pp(Atld)=1-ce¢
probability of disruption in the next Af (s)
P. Kaloyannis (EPFL), C. Rea, 2023 Master’s thesis
1.0
—— 1120807032
1.5 1e6 Disruption Time
0.8
1.0 -
10° = 2
0.5 4, 2 06
2 £
< 0.0 1 > S
10° 5 g 04
-0.5 - E 8
o
&)
~1.0 " 10! o ‘
o m W/\/\/\//\
_1-5 1 T l T ¥ 00 T . . T T T
1.00 1.25 150 1.75 2.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2
K Time (s)
Pulse planning parameter space Real fime nonlinear boundary avoidance and

optimization. disruption prediction.



