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Topics in this talk

 What is turbulence?

* Mechanisms that can drive and suppress turbulence
In a tokamak

* Ways to explore turbulence in fusion plasma
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What is turbulence?

Turbulence or turbulent
flow is fluid motion
characterized by chaotic
changes in
pressure and flow velocity

[Batchelor, G. (2000). Introduction to
Fluid Mechanics]

Irregular, UHSteadY; SW"Iy The turbulent flow by Leonardo da Vinci
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Turbulence is commonly observed in everyday life
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Turbulence is caused by excessive energy

RN
Reynolds number — measure Turbulent
between kinetic energy and B ARG flow
viscous damping '

ud
Re = —
%

Laminar flow

u — macroscopic velocity of the fluid
d — characteristic length
v — kinematic viscosity of the fluid
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Turbulence is characterized by the following features:

* irregularity

should be treated
statistically

Turbulent Flow
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Turbulence is characterized by the following features:

* irregularity

Q_:A

 eddies of many different BN :

length scales

[N
. . . 2 .
)
)
g

@DNSTX-U 2023 Intro to fusion energy and plasma physics course 8



Turbulence is characterized by the following features:
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Turbulence in fusion plasma (tokamak)

@NSTX-U

2023 Intro to fusion energy and plasma physics course

10



Turbulence are driven by instabillities

« Many instabilities in fusion plasma

¢ Alfvén eigenmodes

« Ballooning instability

 Drift wave instability

e Edge Localized Modes

¢ Electron Temperature Gradient instability
¢ Flute instability

e Geodesic Acoustic Mode (GAM)

e Interchange instability

¢ lon Temperature Gradient instability

¢ Kink instability

e Sausage instability

« Tearing mode instability, see also Magnetic island
« Whistler mode

http://fusionwiki.ciemat.es/wiki/Plasma_instability
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Turbulence are driven by instabilities

» Many instabilities in fusion plasma

 Alfvén eigenmodes
« Ballooning instability
« Drift wave instability

Pressure driven instabilities

¢ Kink instability

e Sausage instability

« Tearing mode instability, see also Magnetic island
e Whistler mode

http://fusionwiki.ciemat.es/wiki/Plasma_instability
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Mechanism of the pressure driven instabilities in a
tokamak configuration

e Drift in a curved
magnetic field

%'rnxvﬁ_ BxVB T BxVDB
¢B B2 ~ ¢B B2

VyB =

Courtesy: Manaure Francisquez
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Mechanism of the pressure driven instabilities in tokamak
configuration

%'nwi BxVB T BxVDB

e Drift in a curved ~
qB B? qgB B?

magnetic field

VyB =

« Charge separation

Courtesy: Manaure Francisquez
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Mechanism of the pressure driven instabilities in tokamak
configuration

e Drift in a curved lm2 BxVB T BxVB
. . VyRBp = ~
magnetic field ¢gB  B? ¢gB  B?

« Charge separation

» Electric field

Courtesy: Manaure Francisquez
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Mechanism of the pressure driven instabilities in tokamak
configuration

e Drift in a curved lm2 BxVB T BxVB
. . VyRBp = ~
magnetic field ¢B B> ~ ¢B B2

« Charge separation

» Electric field

 ExB drift Courtesy: Manaure Francisquez
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Turbulent transport is the main mechanism of plasma
losses in fusion plasma

https://feltor-dev.qgithub.io/showroom/ - lon density
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https://feltor-dev.github.io/showroom/

Instabilities can be suppressed by the ‘good’ magnetic

curvature

Bad curvature
Unstable
region
Vp-VB > 0

Electron
- _ | drift

Good curvature
Stable region
Vp-VB<0

Bad curvature
Unstable
region
Vp-VB >0
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Instabilities can be suppressed by the ‘good’ magnetic
curvature

stronger fluctuations in
the bad curvature
region

weaker fluctuations in the
good curvature region

https://feltor-dev.qgithub.io/showroom/ - lon density
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Low aspect ratio tokamaks have improved confinement

Aspect ratio A= R/a

Good Curvature 3 Bad Curvature
Conventional tokamak \ ;
A>25 )
Spherical tokamak 1
A<?2 Magnetic Field Line

onve:
tokamak

% :
Spherical

tokamak

/ Spherical Torus (ST)

Tokamak
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Sheared flows can reduce or completely suppress
turbulence

Most Dangerous Eddies: Sheared Eddies

Transport long distances Less effective Eventually break up
In bad curvature direction

N\
A\
\\\‘
-

Sheared Flows

v

\ Biglari, Diamond, Terry (Phys. Fluids1990),
Carreras, Waltz, Hahm, Kolmogorov, et al.
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Sheared flows can reduce or completely suppress
turbulence

Dominant nonlinear interaction
between turbulent eddies and
+0-directed zonal flows.

Additional large scale sheared zonal
flow (driven by beams, neoclassical)
can completely suppress turbulence

Waltz, Kerbel, Phys. Plasmas 1994 w/ Hammett, Beer, Dorland, Waltz Gyrofluid Eqs., Numerical Tokamak Preject, DoE Computational Grand Challenge
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Stabilization of turbulence improves plasma performance
by formation of a transport barrier

Electric
field

I Transition

Turbulence
suppression

Plasma temperature

Plasma center

|

CREDIT Tatsuya Kobayashi Plasma radius
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Transport is complex and non-linear

ExB
shear

Magnetic

>

Reynolds Damping
stress

Plasma
equilibrium
cross-field transport Davide Galassi ; Fluids, 2019
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Ways to explore turbulence in fusion plasma (tokamak)
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Turbulence is frequently studied via numerical simulation

First . Kinetic B Gyrokinetic [N
principles description description modeling

Simulation of Distribution Averaging Plasma as a
each particle function over fluid
gyromotion

Decrease of complexity, accuracy, computational time

—

Hybrid
models

Reduced
models
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3D gyrokinetic modeling

GYSELA-X; CEA/IRFM ; EU

https://gyselax.qgithub.io/

GYRO:; General Atomics; USA

https://gafusion.qgithub.io/doc/qyro.hitml
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2D fluid modeling: plasma blobs formation and

Interactions with neutrals
/ Credit: T. Bernard
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Dynamics of plasma filaments under different conditions

, Jeppe Olsen et al 2016 Plasma Phys. Control. Fusion 58 044011
M. Held et al 2016 Nucl. Fusion 56 126005
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Local 1D modeling for validation with experimental data

C. Holland et al 2021 Nucl. Fusion 61 066033

V critical gradient
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total flux

experiment

total normalized flux Q
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Plasma turbulence is observed experimentaly

Langmuir probe measurements

Gas puff imaging (GPI) diagnostic
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KSTAR

https://www.iter.org/newsline/198/950
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Summary

 Turbulent flow is irregular, unsteady, swirly

 Turbulent transport is the main mechanism of plasma
losses in fusion plasma

 Turbulent transport can be mitigated
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Understand:
- structure and dynamics of turbulence and induced transport

Predict: l

- scaling of different confinement regimes

Control: l

- plasma equilibrium and confinement, local turbulence control
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