

Plasma turbulence

Galina Avdeeva

2023 Intro to fusion energy and plasma physics course

June 2023

O. E. GARCIA Blob Transport in the Plasma Edge: a Review

1.0

0.1

0.01

About me

CXRS diagnostic

Globus-M spherical tokamak

St.Petersburg Polytechnic
University
+
Ioffe Institute

Russia, Saint Petersburg

Modeling of SMBI

Integrated modeling

KSTAR tokamak

Denmark Technical University

KAIST and NFRI

Denmark + South Korea

NSTX tokamak

General Atomics + PPPL

USA

Topics in this talk

What is turbulence?

 Mechanisms that can drive and suppress turbulence in a tokamak

Ways to explore turbulence in fusion plasma

What is turbulence?

Turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity

[Batchelor, G. (2000). Introduction to Fluid Mechanics]

Irregular, unsteady, swirly

The turbulent flow by Leonardo da Vinci

Turbulence is commonly observed in everyday life

Turbulence is caused by excessive energy

Reynolds number – measure between kinetic energy and viscous damping

$$Re = \frac{ud}{v}$$

- u macroscopic velocity of the fluid
- *d* characteristic length
- v kinematic viscosity of the fluid

Turbulence is characterized by the following features:

irregularity

should be treated statistically

Turbulence is characterized by the following features:

irregularity

 eddies of many different length scales

Turbulence is characterized by the following features:

irregularity

 eddies of many different length scales

 energy dissipation through an "energy cascade"

Turbulence in fusion plasma (tokamak)

Turbulence are driven by instabilities

Many instabilities in fusion plasma

- Alfvén eigenmodes
- · Ballooning instability
- · Drift wave instability
- · Edge Localized Modes
- Electron Temperature Gradient instability
- Flute instability
- Geodesic Acoustic Mode (GAM)
- Interchange instability
- · Ion Temperature Gradient instability
- · Kink instability
- Sausage instability
- Tearing mode instability, see also Magnetic island
- Whistler mode

http://fusionwiki.ciemat.es/wiki/Plasma_instability

Turbulence are driven by instabilities

- Many instabilities in fusion plasma
 - Alfvén eigenmodes
 - Ballooning instability
 - Drift wave instability

Pressure driven instabilities

- Ion remperature Gradient instability
- Kink instability
- Sausage instability
- Tearing mode instability, see also Magnetic island
- Whistler mode

http://fusionwiki.ciemat.es/wiki/Plasma_instability

Mechanism of the pressure driven instabilities in a tokamak configuration

Drift in a curved magnetic field

$$\mathbf{v}_{\nabla B} = \frac{\frac{1}{2} m v_{\perp}^2}{q B} \frac{\mathbf{B} \times \nabla B}{B^2} \approx \frac{T}{q B} \frac{\mathbf{B} \times \nabla B}{B^2}$$

Courtesy: Manaure Francisquez

Mechanism of the pressure driven instabilities in tokamak configuration

Drift in a curved magnetic field

$$\mathbf{v}_{\nabla B} = \frac{\frac{1}{2}mv_{\perp}^2}{qB} \frac{\mathbf{B} \times \nabla B}{B^2} \approx \frac{T}{qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

Charge separation

Courtesy: Manaure Francisquez

Mechanism of the pressure driven instabilities in tokamak configuration

Drift in a curved magnetic field

Electric field

$$\mathbf{v}_{\nabla B} = \frac{\frac{1}{2} m v_{\perp}^2}{qB} \frac{\mathbf{B} \times \nabla B}{B^2} \approx \frac{T}{qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

Courtesy: Manaure Francisquez

Mechanism of the pressure driven instabilities in tokamak configuration

Drift in a curved magnetic field

Electric field

$$\mathbf{v}_{\nabla B} = \frac{\frac{1}{2} m v_{\perp}^2}{qB} \frac{\mathbf{B} \times \nabla B}{B^2} \approx \frac{T}{qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

Courtesy: Manaure Francisquez

Turbulent transport is the main mechanism of plasma losses in fusion plasma

https://feltor-dev.github.io/showroom/ - Ion density

Instabilities can be suppressed by the 'good' magnetic curvature

Instabilities can be suppressed by the 'good' magnetic curvature

https://feltor-dev.github.io/showroom/ - Ion density

Low aspect ratio tokamaks have improved confinement

Aspect ratio A = R/a

Conventional tokamak

A > 2.5

Spherical tokamak

A < 2

Sheared flows can reduce or completely suppress turbulence

Sheared flows can reduce or completely suppress turbulence

Dominant nonlinear interaction between turbulent eddies and ±θ-directed zonal flows.

Additional large scale sheared zonal flow (driven by beams, neoclassical) can completely suppress turbulence

Waltz, Kerbel, Phys. Plasmas 1994 w/ Hammett, Beer, Dorland, Waltz Gyrofluid Eqs., Numerical Tokamak Project, DoE Computational Grand Challenge

Stabilization of turbulence improves plasma performance by formation of a transport barrier

Transport is complex and non-linear

Ways to explore turbulence in fusion plasma (tokamak)

Turbulence is frequently studied via numerical simulation

3D gyrokinetic modeling

GYRO; General Atomics; USA

https://gafusion.github.io/doc/gyro.html

GYSELA-X; CEA/IRFM; EU

https://gyselax.github.io/

2D fluid modeling: plasma blobs formation and interactions with neutrals

Dynamics of plasma filaments under different conditions

Jeppe Olsen et al 2016 Plasma Phys. Control. Fusion 58 044011

Local 1D modeling for validation with experimental data

C. Holland et al 2021 Nucl. Fusion 61 066033

Tom F. Neiser/ US-EU TTF Meeting/ April 7th, 2022

Large database validation

Plasma turbulence is observed experimentaly

Electron cyclotron emission diagnostic KSTAR

https://www.iter.org/newsline/198/950

Gas puff imaging (GPI) diagnostic NSTX

S. J. Zweben et al., Review of scientific Instruments 88, 041101 (2017)

Summary

Turbulent flow is irregular, unsteady, swirly

 Turbulent transport is the main mechanism of plasma losses in fusion plasma

Turbulent transport can be mitigated

Understand:

- structure and dynamics of turbulence and induced transport

Predict:

- scaling of different confinement regimes

Control:

- plasma equilibrium and confinement, local turbulence control