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Outline of talk

q Personal Journey

q ITER Mission, Basis, Goals, Scenarios and Overall Design

q ITER Project and Overview of Construction Status

q ITER Research Plan (IRP) and burning plasma physics

q Conclusions
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Personal Journey
q Bachelor in Theoretical Physics (interested in Astrophysics) at UCM – Madrid
q PhD in fusion plasma theory at UCM à short stay at JET (2 à 6 months)
q Change of PhD topic : edge plasma experiments and modelling at JET
q Postdoc at JET 2-D edge modelling and experiment (detachment) à

participation in ITER expert groups (International Tokamak Physics Activities)
q Move to ITER EU Home Team (IPP-Garching) à R&D for ITER (exp. +

modelling - ELMs R&D), EU R&D PWI programme management, ITPA DivSOL
q Move to ITER Organization à Science, Controls and Operation Department

Ø Edge/Pedestal physics and Edge-core plasma integration, Science and Technology Advisory
Committee Secretary, ITPA Edge and Pedestal

Ø Section Leader Confinement & Modelling, STAC Secretary, ITPA Transport & Conf.
Ø Science Division Head :

ITER Research Plan, Plasma Control System design, Integrated Modeling and Analysis Suite
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ITER Mission, Basis, Goals and overall 
design
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ITER Mission
To demonstrate the scientific and technological feasibility of fusion power as 

energy source for humankind

R=6.2 m, a=2.0 m

D (2H) + T(3H) fusion



ITER_D_8RJYHJ 
Page 6/63

ITER Presentation
PPPL Introduction to Fusion Energy and Plasma Physics Course

ITER

Ø Net production of fusion energy 
Pfusion (4He + n) = Pa+Pn > Pexternal-heat

Q = Pfusion (4He + n)/Pexternal-heat

Ptotal-heat = Pa (4He) + Pexternal-heat

Pa/Pexternal-heat = Q/5 

Ø To achieve high Q (> 5) requires hot (> 10
keV) plasmas with sufficient density that
keep energy for sufficiently long time

nitETi > 3´1021 m-3 s keV

ITER Basis: DT Fusion Power Production
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ITER Basis: Magnetic Confinement 
At high temperatures required for fusion D and T are ionized (“Plasma”) à

hot DT can be contained by magnetic fields
Magnetic fields are used to :
Ø Reduce thermal losses across magnetic field
Ø Provide stabilizing compression force to compensate hot plasma 

expansion
Tokamak

𝑞 =
𝑇𝑜𝑟𝑜𝑖𝑑𝑎𝑙 𝑡𝑢𝑟𝑛𝑠
𝑃𝑜𝑙𝑜𝑖𝑑𝑎𝑙 𝑡𝑢𝑟𝑛𝑠 ≥ 2
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ITER Basis: Plasma Heating
To achieve fusion power production T ~ 10 keV à Heating of Plasma is

required :
Ø Ohmic heating = Ip2 Rp; Rp ~ T-3/2 à insufficient
Ø Radio Frequency Heating
Ø Injection of energetic atoms
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tth µ IpR2P-2/3

Ø Energy confinement  difficult to predict quantitatively à use scalings from 
experiments + plasma physics limits to dimension ITER to achieve its goals 

ITER Basis: Energy Confinement (tE)
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ITER Goals
Ø Pulsed operation: 
Q ≥ 10 for burn lengths of 300-500 s

inductively driven current
à Baseline scenario 15 MA / 5.3 T

Pa ≥ 2 Pexternal-heat
Ø Long pulse operation:

Q ~ 5 for long pulses up to 1000 s
à Hybrid scenario ~ 12.5 MA / 5.3 T
Ø Steady-state operation:

Q ~ 5 for long pulses up to 3000 s, with 
fully non-inductive current drive

à Steady-state scenario ~ 10 MA / 5.3 T
R=6.2 m, a=2.0 m
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ITER Q = 10 scenario (300 – 500 s burn)
q Based on conventional sawtoothing H-mode with H98 = 1 à scenario used for

the design of magnets and components (15 MA/5.3 T)
q Paux = PNBI + PECH (+ PICH) ~ 50 MW à Alpha-heating dominant scenario with

non-inductively driven current ~ 35%
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Few key ingredients to achieve ITER’s fusion goals - I
q Achievement of high energy confinement plasmas

Low confinement (L-mode): pulsed operation (𝐻~0.5)

High confinement (H-mode): pulsed operation (𝐻~1)

𝑃!"# 𝑻 < 𝑃!"# 𝑫 < 𝑃!"# 𝑯

𝑃!"# 𝑯𝒆 ~ 𝑃!"# 𝑯 / 1.5

High confinement

Improved high confinement: long pulse (𝐻~1.2) / steady-state (𝐻~1.6)
Improved high 
confinement

Low
confinement

Power threshold for transition from L to H-mode:

𝑃!"# ∝ 𝑛$%.'×𝐵%.( (empirical basis) 

Pfusion ~ Wplasma-th2
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q Edge-core integration : stationary and ELM transient power fluxes

R. Pitts PSI 2018

qdiv < 10 MWm-2

ELM control : Mitigation by fELM increase and suppressionRadiative Dissipation

JOREK
G. Huijsmans

Few key ingredients to achieve ITER’s fusion goals - II
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q MHD stable plasma operation + mitigation if global instabilities develop
(disruptions)

Few key ingredients to achieve ITER’s fusion goals - III

Large thermal and 
electromagnetic loads

Wplasma-th

Wplasma-mag

Jhalo + Jeddy x B forces

M. Lehnen EPS 2017 Wplasma-mag
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ITER Main Design Features
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ITER Heating and Current Drive systems
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ITER Diagnostics and 3-D coils (Error Field, ELM control)
q Diagnostics: ~ 60 instruments
measuring ~ 100 parameters

q External error field correction
coils + internal ELM control coils
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ITER Disruption Mitigation System

JET
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Tritium Breeding : Test Blanket Systems
Tritium not available in sufficient amounts for large scale nuclear fusion energy  

production à Tritium needs to be produced in-situ (n + Li)
T production schemes will de demonstrated in ITER (at small scale)

Different test blanket systems will be 
installed in ITER to test different 
combinations of design options:

- Liquid metal breeder
- Solid breeder
- Helium coolant
- Water coolant
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ITER as a Project and overview of 
Construction Status
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ITER

The seven ITER Members represent more than 50% of  
the world’s population and about 85% of the global GDP

China EU India Japan Korea Russia USA

§ 28 June 2005: The ITER Members 
unanimously agreed to build ITER  
on the site proposed by Europe

§ 21 November 2006: The ITER 
Agreement is signed at the Élysée
Palace, in Paris. 

Global challenge, global response
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Construction ITER – Who manufactures What ?



ITER_D_8RJYHJ 
Page 23/63

ITER Presentation
PPPL Introduction to Fusion Energy and Plasma Physics Course

ITER Cryostat

Largest stainless steel high-vacuum 
pressure container ever built

Provides high-vacuum and ultra-cool 
environment

Height: 30 m
Diameter: 30 m
Weight: 3,850 t
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Double wall steel container
blanket modules
cooling water

High-vacuum environment

Primary containment barrier

Volume: 1,400 m3

Plasma volume: 840 m3

Weight: 8,500 t

ITER Vacuum Vessel
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ITER Magnet System

Central solenoid
13 m high
1,000 tons

18 toroidal field coils
17 m high
360 tons each

6 poloidal field coils
8-24 m in diameter
200-400 tons
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Itinerary of ITER Components
= Itinerary of ITER 

Components
ITER Site 
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Many massive arrivals in 2020-23 (few shown)

TF TF
PF6

Vacuum Vessel Sector # 6 First Central Solenoid Module PF1
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ITER Site Construction Status
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March 2023ITER construction site drone view 
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Worksite progress

Cryostat upper cylinder
(temporary storage)

RTE (France) 400 kV switchyard

Tokamak Complex 

Cryoplant

Cryoplant

Radiofrequency Bdg.

Cryostat workshop
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ITER Control Room
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Balance of plant
Towards commissioning

Cryoplant:
5 000 tonnes of equipment
LHe: 25 t
Cooling Power: 
75 kW at 4.5 K (Helium)
1300kW at 80 K (Nitrogen)
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ITER Tokamak Assembly Status
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Assembly Hall and Tokamak building
q Tokamak components assembled in assembly hall and lifted by cranes into 

tokamak pit
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On May 26-27 2020, the base of the 
Cryostat (1,250 t; procured by India) 

was successfully inserted into the 
Tokamak Assembly Pit.

A crucial milestone

28 July 2020: remote celebration by 7 ITER 
Members Heads of State and French 

President
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Sub-sector assembly
q Assembly of Vacuum Vessel, Thermal Shield and 2 Toroidal Field coils

TF Coil Assembly Finalized Sector Assembly before transfer to pit
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11 May 
2022 

Sector 6 fully lifted out of SSAT-2 and rotated 90°
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11 May 
2022 

Over the tokamak pit wall: 20 cm gap
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11 May 
2022 

Lowering into the tokamak pit
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14 June 2022 

In-place and alignment procedure started
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Alignment procedure completed
15 October 2022 
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Alignment procedure guided by physics assessment of error fields

TFC error field analysis will be extended to other coils and components

Alignment targets ensure that for 99% of the cases TF assembly will contribute less than 
33% of the n = 1 overlap field (ITPA scaling)

(15 MA/5.3T : plasma 1 SOF, plasma 2 EOB)
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September 2022 

VV Sector 8 in vertical 
position in the upending 
tool ready for transfer to 

SSAT-2

VV Sector 7 
assembly nearly 

complete
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First module of the 1000 tonne, 18 m tall central solenoid positioned (to ±1 mm accuracy in plane) on the 
bespoke assembly platform.  Second module awaiting on the right. 

June 2023
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Issues found and solutions
more details in

https://www.iter.org/newsline/-/3818
and

https://www.iter.org/newsline/-/3830

https://www.iter.org/newsline/-/3818
https://www.iter.org/newsline/-/3830
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Corrosion of cooling pipes in thermal shields
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Dimensional non-conformities of VV sectors impacting sector-to-
sector welding
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Ø Solution for VV thermal shield à remove old pipes and re-weld
new pipes (different steel and welding process/material) + re-
manufacture of few panels à requires removal of installed
shields from sectors

Ø Solution for Cryostat thermal shield à leave old pipes (unused)
and re-weld new pipes (different steel/welding process/material)
on-site

Ø Solution to VV non-conformity à remove and add material to
meet required dimensions (73 - 400 kg per octant)

Repairs to about to start (contracts will be signed soon) à
duration of repairs cannot be precisely estimated at this time
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ITER Research Plan (IRP) and burning 
plasma physics 
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ITER Research Plan (IRP)
IRP describes strategy for R&D to achieve Project goals starting from First Plasma 

to Q = 10 (300-500 s),Q = 5 (1000 s) & Q = 5 steady-state
q Proposed R&D is supported by available systems in each phase

Ø Initial phase H/He (and D) to demonstrate :

§ 15 MA/5.3 T plasmas in L-mode

§ Low/Medium current plasmas (Ip = 5 – 7.5 MA) in H-
mode

Ø Main phase (D and DT) to demonstrate :

§ Burning Q = 10 plasmas
§ Long Pulse Q = 5 plasmas

Details under 
reconsideration
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Fusion Power Operation (D/DT)
q Main elements of experimental programme:

Ø Recommission systems with D plasmas (H&CD, diagnostics)
Ø Demonstration of D H-mode integrated operation at 7.5 MA/2.65 T and 

expansion towards higher Ip/Bt
Ø Introduction of T in trace levels up to ~ 50% D/ 50% T
Ø Increase of Ip/Bt towards 15 MA/5.3T  à optimization of Q and extension 

of burn length
Ø Development of long pulse scenarios at Ip < 15 MA
Ø Demonstration of Q ≥ 10 goal
Ø Optimization of Q in long pulses (1000 s) and demonstration of Q ~ 5 

goal
Ø Optimization of Q in steady-state pulses (3000 s) and demonstration of 

Q ~ 5 goal
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ITER burning plasma scenarios
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ITER Q = 10 scenario (300 – 500 s burn)
q Based on conventional sawtoothing H-mode with H98 = 1 à scenario used for

the design of magnets and components (15 MA/5.3 T)
q Paux = PNBI + PECH (+ PICH) ~ 50 MW à Alpha-heating dominant scenario with

non-inductively driven current ~ 35%
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ITER Q ≥ 5 scenario (1000s burn)
q Main option is based on improved H-mode/hybrid scenario with q(0) > 1 and

H98 > 1.2 with burn length limited by q(0) reaching 1 (12.5 MA/5.3 T)
q Obtained with Paux = PNBI + PECH (+ PICH) ≥ 50 MW with non-inductively driven

current ~ 55%

Kim NF 2016
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ITER Q ~ 5 scenario (steady-state)
q Based on improved H-mode/hybrid scenario with stationary q profile (q > 1)

and H98 > 1.5 length limited to 3000s by hardware design (10 MA/5.3 T)
q Obtained with Paux = PNBI + PECH ≥ 70 MW with non-inductively driven current ~

100%

Kim NF 2021
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Q = 5 steady steady-state plasma at 10 MA 
q Conditions identified by 

1.5-D ASTRA modelling
ü EPED1+SOLPS used for 

pedestal and boundary
§ Q=5.02, fGW=0.69
§ H98=1.52, 𝛽N=3.02
§ qmin=1.23
§ Relatively high li(3)~0.87 

mainly due to 50 MW NBI (+ 
20-30 MW ECH)

§ Improved confinement is 
essential 

Polevoi – NF 2020
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Access to high Q conditions
Ø Access to high Q requires build-up of Palpha since Paux is moderate and PL-H is high
Ø Key to high Q access is density control (gas fuelling for nsep and pellet fuelling for 

ncore)

5MA

F. Koechl - ITER – JINTRAC - NF 2020
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Exit from high Q conditions

5MA

F. Koechl - ITER – JINTRAC - NF 2020

Ø Main issue in exit from high Q
is to avoid fast H-L transitions
à radial plasma movement
difficult to control and large
power fluxes to divertor

Ø Adjustment of Paux, fuelling and Ne seeding
required to lengthen Wplasma decrease phase
and avoid too high qdiv or too deep
detachment
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Energetic ions in ITER scenarios - I
q Energetic ions impact on ITER burning plasmas 

Ø Can drive MHD Alfvén eigenmodes à energetic ion loss Pa L

Ø Can reduce anomalous transport level à higher tE à Pa J

Ø Can increase core plasma b and thus shafranov shift à increased edge 
stability/pressure à increased tE à Pa J

Ø Alfvén eigenmodes can reduce plasma turbulence à higher tE but 
energetic ion loss à Pa ? J

q Coupling between all effects difficult to predict in quantitative way for 
ITER burning plasmas since Pa is dominant  



ITER_D_8RJYHJ 
Page 61/63

ITER Presentation
PPPL Introduction to Fusion Energy and Plasma Physics Course

Energetic ions in ITER scenarios - II
q Consequences of EP-driven Alfvén eigenmodes range from

Ø Benign saturation à significant high-amplitude bursting and transport
q Extrapolation from present machines difficult due to small 

Radial localisation of TAE gaps in ITER Q = 10 plasmas 

Ø Besides loss of heating, ITER first
wall loads acceptable for fast ion
losses of a few %

Ø Max power transfer from a’s occurs
when drift orbit width ~ mode width
à n ~ 30

Ø Many overlapping AE

ITER will quantify impact of fast ion 
instabilities in Q = 10 plasmas and explore 

means for mitigation and control
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Conclusions
q ITER will demonstrate the scientific and technological feasibility of fusion

power as energy source for humankind
q ITER construction is progressing despite challenges à commitment from

ITER Organization and its Members
q ITER Research Plan provides experimental strategy to progress from First

Plasma through to achievement of Project’s goals: Q = 10 (300-500 s), Q = 5
(1000 s) & Q = 5 steady-state

q ITER high Q scenarios will address key burning plasma issues for reactors:
ü Coupling of physics processes in self-heated plasmas
ü Integration of core-edge physics to achieve burning plasma conditions with acceptable edge plasma

conditions
ü Effectiveness of actuators and control schemes for burning plasmas à high Q disruption-free

operation
ü In addition many fusion reactor technologies will be demonstrated (Tritium cycle, TBMs, H&CD,

PFCs, etc.)
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Thanks for your attention


