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Introduction

Current fusion devices (Fig. 2) involve blanket systems
that serve the purpose of tritium (fuel) management (Fig.
1), neutron multiplication, and power conversion'. Molten
salt fusion breeder blanket Sysiems have become a
popular option because salts such as FLIBe can serve all
three major roles in oneZ.

Methodology

Our project consists of three main components:

A systems level analysis of the heat removal subsystem using the systems
analysis modle (SAM) code
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Heat Transfer Enhancement Analysis
Further analysis of the primary heat exchanger is done
using Nek5000. Twisted tapes are an aftractive alternative to
straight pipe heat exchangers for molten salts as they allow
better convective heat transfer at lower Reynold's numbers.
A 3D model of a pipe with a twisted tape insert along with
NeKSDDD resuls generated can be seen in Fi
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https://drive.google.com/file/d/1YHiuJDRAvI079ZIX9AUPxvBGsRZ7k413/view
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First Wall Components within Fusion Devices
System Level Viewpoint

Power Conversion Thermodynamic Cycles
Component Level Heat Removal Mechanisms




First Wall Components within Fusion Devices

Inner and Outer Vertical
Target (IVT and OVT)

Dome
Umbrella

Knuckle

Cassette Body

Plasma-Facing Unit

Inner and Outer Particle
(PFU) of OVT

Reflector Plate

ITER Plasma Facing Component’
Divertor (Up to 20 MW/m?)

1ITER Organization, 2021, https://www.iter.org/




First Wall Components within Fusion Devices

ITER! ITER Blanket!
(~4.5 MW/m?)

1ITER Organization, 2021, https://www.iter.org/




Dual Cooled Lead Lithium Concept

PbLi

PbLi Flow :
' 5-mm SiC FCI

He-cooled

First Wall

PbLi Manifold

(b)

Schematic of the DCLL with PbLi and Helium 1st wall cooling’

'S. Smolentsev, Fluids 2021, 6(3), 110; https://doi.orq/10.3390/fluids6030110 8
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Liqu

Immersion Blanket Concept (ARC)

2https://news.mit.edu/2018/nas-
report-right-path-fusion-energy-1221
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Rendering: Commonwealth Fusion Systems

ARC Overview!

1S. Ferry, 2023, https://suli.pppl.gov/2023/course/SULI%202023%20presentation.pdf 9




Why Heat Removal? (System Level)

- Cooling of components to prevent degradation and damage

- Why use fusion devices at all?
— Power generation

== Power Generation Schematic for a
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System Level — Power Cycles

Based on a Rankine power cycle that is built upon centuries of

experience in the power industry

Power Generation Schematic for a
Fusion Device - MIT Plasma Science
and Fusion Center (PSFC)’
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System Level — Power Cycles

- Regardless of heat source, most power generation results in the same
thing, boiling water to spin a turbine that causes a generator to create

electricity.

Power Generation Schematic for a
Fusion Device - MIT Plasma Science
and Fusion Center (PSFC)’
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System Level — Power Cycles

- There are two common forms of power cycles that could be used:
— Rankine (Liquid - water based)
— Brayton (Gas — helium or others based)

3

Turbine Hot Energy Source

HeatIn @R @ =000 ¥ | e e e e e o e e e e e e e e e e e e e :
W orl\ Out :
Boiler t Heat Exchanger

-»Q: 1

Work In Pump

Heat Exchanger

Heat Out

- ””””” oUT <t S ;stgmwBauﬁdaw

Condenser Cold Region
Rankine Cycle Brayton Cycle

https://energyeducation.ca/encyclopedia/Rankine_cycle

https://energyeducation.ca/encyclopedia/Brayton_cycle 13




System Level — Power Cycles

- Both cycles can be made more
complex with reheating, regeneration,

multiple stages, to maximize the Heat In .
amount of useful energy out vs. heat ' Boiler Q

in

Work Out |1//4 QH — QC TH — TC
— — — or =
n Heat In QH QH TH ‘ ’ : Heat Out
Work In Pump ! |:>

+ Inthis case, the T, or T are the Condonser
hottest and coldest reservoir Rankine Cycle

temperatures.

Thttps://energyeducation.ca/encyclopedia/Rankine_cycle
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System Level — Power Cycles

Both cycles can be made more
complex with reheating, regeneration,
multiple stages, to maximize the
amount of useful energy out vs. heat
In

Work Out |1//4 QH — QC _ TH — TC

= Heat In =QH= QH or= TH

We have a few options, lower our final
heat sink temperature, raise our
operating temperature, but never can
reach ideal efficiencies.

Turbine

Heat In
W ork Out
Boiler
- Q - . Heat Out
Work In Pump |:>

Condenser

Rankine Cycle

Thttps://energyeducation.ca/encyclopedia/Rankine_cycle
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System Level — Heat Removal

- A critical aspect of heat
removal is ensuring we
understand the heat transfer
mechanisms that control our
power cycle capabilities,
material temperature limits,
and instrumentation/control
schemes.

ITER Blanket!
(~4.5 MW/m2)

16
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Heat Transfer Mechanisms

- Heat Transfer occurs whenever there is a temperature difference
between two objects
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Heat Transfer Mechanisms

« Heat Transfer occurs in:
— Solids — Gases — Fluids — Plasmas - Others?
— As a continuum (not individual particles)

Very General Conservation of Energy Equation

Enthalpy Formulation

Dh—v (kVT)+"”+DP+ d
Pt ~ 1 pt H

Temperature Formulation

DT . DP
pCpD—t:V'(kVT)+q +,3TD—t+,u(D




Heat Transfer Mechanisms

Heat Conduction (Conductive Heat Transfer)+
— Can occur within an object and between objects in contact
— Described using diffusion operator (VkKVT) in the energy equation

Qbed 1 Object2

e

8 q

19



Heat Transfer Mechanisms

Heat Convection (Convective Heat Transfer)

— Involves a fluid (liquid or gas) that is moving due to mechanical or buoyant
forces

— Described using the advective operator (17 VT orV - Vh )



Heat Transfer Mechanisms

- Heat Convection (Convective Heat Transfer)
— Two forms (Free/Natural and Forced Convection)

Qconv. = HTC(Twau — Thuix)SA FO(‘C@A .Con\’eC'hm
yre = N ‘f,”u; 0t Toall
— ﬁ

HTC — Heat Transfer Coef ficient
Twau — Wall Temperature (°C)
Tyux — Bulk Fluid Temperature (°C)

SA — Surface Area (m?)

Nu — Nondimensional
Heat Transfer Coef ficient or

Nusselt Number




Heat Transfer Mechanisms

- Heat Convection (Convective Heat Transfer)
— Two forms (Free/Natural and Forced Convection)

Qconv. = HTC(Twau — T )SA Fr‘ee /Ma:l'ul"al CO"VeChm
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Heat Transfer Mechanisms

Heat Radiation (Irradiative Heat Transfer)

Qrad = SO-(TI;LOt - Tgold)SA

WA
¢ — Emissitivity (=) § ff;—> -

o — Stefan — Boltzmann M
Constant

g W :
— 5.6703x10 T \_\w '

Ty,+ — Hotter Surface (K) T
Tcoig — Colder Surface (K) {

SA — Surface Area (m?)
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Scaling and Similitude for Fusion Device Design

We take advantage of surrogate fluids for molten salts, liquid metals, and
gases to do scaled heat transfer and fluid dynamics experiments.
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Relevant scaling parameters/non-
dimensional numbers:

/\

c uD
Pr=ﬂ Re:p h
k p

Desired Heat Transfer/Fluid
Dynamics Design Information:

HTC = f (Re, Pr,Geom, BCs)

—

dP = f(Re,Geom)

J. Energy Res., Vol. 46(3), pp. 3554-3571, 2022

Cabral, A., et al., “Identification of Surrogate Fluids for Molten Salt Coolants used in Energy Systems Applications including Concentrated Solar and Nuclear Power Plants,” Int.
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Similitude of Heat Transfer
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| Cabral, A., et al., “Identification of Surrogate Fluids for Molten Salt Coolants used in Energy Systems Applications including Concentrated Solar and Nuclear Power Plants,” Int. J. Energy Res., Vol. 46(3), pp. 3554-3571, 2022
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Types of Heat Transfer Enhancements

Different forms of heat transfer enhancements exists:
 Swirl flow inserts

* Internal fins
* Rifling/grooves
 Others

Performance quantified by the

Thermal Performance Factor
Nu
(7o)

T.P.F.= 1 =
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Computational Fluid Dynamics
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|Tutwi|er, S., Shaver, D., Carasik, L. B., “Determination of Aspect Ratio Influence on Flow and Heat Transfer Behavior in Twisted Elliptical Tubes for Molten Salt Applications,” Adv. In Thermal Hydraulics, 2022




Experimental Fluid Dynamics

Particle tracking within
pebble bed fusion
device geometries

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X (mm) Velocity Magnitude (m/s)

30

x (mm)

Wiggins, C., et al., “Noninvasive interrogation of local flow phenomena in twisted tape swirled flow via positron emission particle tracking (PEPT),” Nuc. Eng. Des., Vol. 387, pp. 1116012022, 2022.
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Additional Resources

Heat Transfer Lectures:
https://www.youtube.com/playlist?list=PLZ0ZfX TaWAHZOgn8CRjpgREIp5Dd-GaY

Fluid Mechanics Lectures:
https://www.youtube.com/watch?v=clVwKynHpBO&list=PLZOZfX TaWAGocs2k5QmTL440KOI7r
n34&ab channel=CPPMechEngTutorials

https://www.youtube.com/watch?v=PXjZ7xEAqsU&list=PLZ0OZfX TaWAHObaRhA8OosWVbEsJK
5sPe&ab channel=CPPMechEngTutorials

https://www.youtube.com/watch?v=kxhTMc8tyEo&list=PLZOZfX TaWAE7uM59dIBr-
rH73WTJCcp &ab channel=CPPMechEnqgTutorials
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