Magnetic Reconnection, a Celestial Phenomenon in the Laboratory

Jan Egedal

In collaboration with the WiPPL team,

Including J. Olson, S. Greess, H. Gurram, B. Wetherton, A. Millet-Ayalla, P. Gradney, J. Schroeder, C. Kuchta, A. Le, W. Daughton, M. Clark, J. Wallace, and C. B. Forest

Introduction to Fusion Energy and Plasma Physics Course SULI, June 16th, 2022

Grew up in a small village "Brylle" in Denmark Went to the Technical University of Denmark

Attended a colloquium on fusion \rightarrow Internship at JET (the largest tokamak in the world)

Did PhD at JET/Oxford Uni. UK. ("Experimental Verification of Murphy's law")

Lunch offer: → PostDoc Building a Magnetic Reconnection Experiment "VTF" at MIT, MA, USA.

Stayed at MIT for 15 years

Since 2013, working at UW-Madison mainly on magnetic reconnection.

Background in fusion very helpful!

• A change in magnetic topology in the presence of a plasma

Consider a small perturbation Plasma carrying a current Magnetic fields

• A change in magnetic topology in the presence of a plasma

Consider a small perturbation

• A change in magnetic topology in the presence of a plasma

Consider a small perturbation

• A change in magnetic topology in the presence of a plasma

Consider a small perturbation

• A change in magnetic topology in the presence of a plasma

Consider a small perturbation

Nearly all the initial magnetic energy is converted into:

- 1. thermal energy
- 2. kinetic energy on fast electrons and ions
- 3. kinetic energy of large scale flows

Jan Egedal

Coronal Mass Ejections

The most powerful explosions in our solar system

Can power the US consumption of electricity for 10 million years

Outline

- Magnetic Reconnection and Space Weather
- Pressure anisotropy and electron trapping, MMS
- TREX, the Terrestrial Reconnection Experiment
 - Supersonically driven reconnection
 - Shock formation yields magnetic pile-up
 - Magnetic pile-up regulates the normalized Rec.-Rate. [Olson+, JPP, 2021]
 - Width of the TREX electron diffusion region, ~ 2d_e [Greess+, JGR, 2021]
 - Upgrade to reach fully kinetic reconnection regime
- Conclusions

Space Weather

Lin & Forbes (2000)

Space Weather

MHD-simulations

www.nasa.gov/content/goddard/mms-studying-magnetic-reconnection-near-earth Coronal Mass Ejection July 2012

The Earth's Magnetic Shield

Magnetic sub-storms

Aurora Borealis

October 26th, 2011, Kola Peninsula, Russia

Jan Egedal

Carrington Flare (1859, Sep 1, am 11:18)

- Richard Carrington (England) first observed a solar flare in 1859.
- White flare for 5 minutes.
- Very bright aura appeared next day in many places on Earth including Cuba, the Bahamas, Jamaica, El Salvador and Hawaii.
- Largest magnetic storm in recent 200 years (> 1000 nT).

Telegraph systems all over Europe and North America failed, in some cases even shocking telegraph operators. Telegraph pylons threw sparks and telegraph paper spontaneously caught Fire. (Loomis 1861)

http://en.wikipedia.org/wiki/Solar_storm_of_1859

Space Weather

The Solar Wind affects the Earth's environment

Magnetic storm and aurora on March 13, that lead to Quebeck blackout (for 6 million people)

Magnetic storm ~ 540 nT, Solar flare X4.6.

A Carrington Flare today \rightarrow 30 – 70 billion dollars of damage

PJM Public Service Step Up Transformer Severe internal damage caused by

Jan Egedal

Occurrence frequency of flares?

The Tokamak Device

Best plasma confinement device on Earth

Magnetic Fusion Devices

International Thermonuclear Experimental Reactor

Magnetic Fusion Devices

International Thermonuclear Experimental Reactor

Sawtooth Crashes seen on all tokamaks (T_e perturbations)

Plasma in a Magnetic Field

•The plasma feels a force from the magnetic field

•Ions and electrons follow the field lines

•Plasmas are highly conductive

•Heliosphere like a conductive fluid of liquid copper

Electromagnetism 101

Faraday's law: EMF = -Area · dB/dt
Faraday's law for a conducting ring: EMF=0.

Electromagnetism 101

• Faraday's law:

 $EMF = -Area \cdot \frac{dB}{dt}$

- Faraday's law for a conducting ring: EMF=0.
- The magnetic flux through the ring is trapped
- This also holds if the ring is made of plasma
 → plasma frozen in condition

- Ideal Plasma $\mathbf{E} = \mathbf{E} + \mathbf{v} \times \mathbf{B} = 0$ \rightarrow Plasma and B frozen together

Resistive effects can be important

• Faraday's law:

 $EMF = -Area \cdot \frac{dB}{dt}$

- Faraday's law for a conducting ring: EMF=0.
- The magnetic flux through the ring is trapped
- This also holds if the ring is made of plasma
 → plasma frozen in condition

However, the field can go through a resistive ring!

Simplest model for reconnection: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}$ [Sweet-Parker (1957)]

$$-\frac{\partial \Psi}{\partial t}\Big|_{X} = E_{X} = \eta j_{X}$$

Reconnection: A Long Standing Problem

Simplest model for reconnection: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}$ [Sweet-Parker (1957)]

Sweet-Parker: L >> δ :

$$t_{sp} = \sqrt{t_R t_A} = \sqrt{\frac{\mu_0 L^2}{\eta}} \sqrt{\frac{L}{v_A}}$$

Unfavorable for fast reconnection

Two months for a coronal mass ejections

The collisionless Vlasov equation:

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \left(\frac{d}{dt} f_j(\mathbf{x}, \mathbf{v}, t) = 0\right) \cdot \nabla_v \right) f_j = 0$$
$$n_j = \int f_j d^3 v \qquad \mathbf{J}_j = q_j \int \mathbf{v} f_j d^3 v$$

+ Maxwell's eqs.

Vlasov-Maxwell system of equations

Can be solved numerically (PIC-codes)

Fluid Formulation (Conservation Laws)

Isotropic (scalar) pressure is the standard closure! p = n T

Add Maxwell's eqs to complete the fluid model

Two-Fluid Simulation

Out of plane

current

GEM challenge (Hall reconnection) $\mathbf{E} + \mathbf{v} \times \mathbf{B} = (\mathbf{j} \times \mathbf{B})/\text{ne}$ [Birn,... Drake, et al. (2001)]

Two-Fluid Simulation

Out of plane GEM challenge (Hall reconnection) current $\mathbf{E} + \mathbf{v} \times \mathbf{B} = (\mathbf{j} \times \mathbf{B})/ne$ [Birn,... Drake, et al. (2001)] 2 FLUID: ISOTROPIC PRESSURE y/d_i lsotropic⁻ pressure 0 0 -2 8 -8 0 x/d Aspect ratio: 1 / 10 \rightarrow v_{in} ~ v_A / 10

Two-Fluid Simulation

c/ω_{pi}

Out of plane GEM challenge (Hall reconnection) current $\mathbf{E} + \mathbf{v} \times \mathbf{B} = (\mathbf{j} \times \mathbf{B})/ne$ [Birn,... Drake, et al. (2001)] 2 FLUID: ISOTROPIC PRESSURE y/d. Isotropic pressure 0 c/ω_{pi} -2 288 µs 4x10⁻³ (T) -8 42 2 40 R (cm) 38 The Hall term is associated with quadrupolar 0 36 -1 out of plane fields, as observed in the 34 -2 Magnetic Reconnection Experiment (MRX) -3 32 [Ren, PRL, 2005] 30 -5

Jan Egedal

Fermi heating in contracting magnetic island [Drake et al., 2006]

But often reconnection is embedded in an open system:

Fresh electrons streaming in from the ambient plasma sets the form of the electron distribution function.

[Egedal et al. 2008]

With $v_{the} >> v_A$ we may expect Boltzman electrons with T_e = constant. [Snyder+ 1997]

Electrons Trapped by Φ_{\parallel} , $B_g=0.4$

Jan Egedal

Electrons Trapped by Φ_{\parallel} , $B_{g}=0.4$

Jan Egedal
The Magnetosphere as a Laboratory

MMS, Launched March 12, 2015.

Model Tested Against MMS data

Model Tested Against MMS data

[Øieroset, GRL, 2016], $B_g \sim 2.5 B_r$

EoS Confirmed by MMS

[Wetherton, GRL, 2019],

Anisotropic pressure model

EoS Implemented in Two-Fluid Code

• *EoS* implemented by O Ohia using the HiFi framework developed in part by VS Lukin

Model parameterized in Le et al., PRL 2009

Anisotropic pressure model

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}_i) &= 0\\ m_i n \left(\frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i \right) &= \mathbf{J} \times \mathbf{B} - \nabla \cdot \bar{\mathbf{P}} + m_i n \nu_i \nabla^2 \mathbf{V}_i\\ \frac{\partial}{\partial t} \left(\frac{p_i}{n^{\Gamma}} \right) &= -\mathbf{V}_i \cdot \nabla \frac{p_i}{n^{\Gamma}}\\ \frac{\partial \mathbf{B}'}{\partial t} &= -\nabla \times \mathbf{E}'\\ \mathbf{E}' + \mathbf{V}_i \times \mathbf{B} &= \frac{1}{ne} \left(\mathbf{J} \times \mathbf{B}' - \nabla \cdot \bar{\mathbf{P}}_e \right) + \eta_R \mathbf{J} - \eta_H \nabla^2 \mathbf{J}\\ \mathbf{B}' &= \left(1 - d_e^2 \nabla^2 \right) \mathbf{B}\\ \mu_0 \mathbf{J} &= \nabla \times \mathbf{B} \end{aligned}$$

Standard two-fluid equations

O WiPPL

Out of plane current

[Ohia et al., PRL, 2012]

Out of plane current

[Ohia et al., PRL, 2012]

The WiPPL User Facility

The BRB (Big Red Ball) is comprised of a 3m diameter vacuum vessel.

Highly flexible plasma sources and magnetic configurations are available.

Temperatures:4 - 30 eVDensities: $10^{18} - 10^{19} \text{ m}^{-3}$ Magnetic fields:0 - 80 mT

The Terrestrial Reconnection Experiment (TREX) is one among several user configurations.

New Capabilities Continues to be Developed

New insert provides improved diagnostic access, as well as quick turn-around between experimental configurations

TREX implemented at the WiPPL user facility

Asymmetric reconnection is driven by 4 single turn internal drive coils, energized by capacitor bank at 10kV

TREX implemented at the WiPPL user facility

Asymmetric reconnection is driven by 4 single turn internal drive coils, energized by capacitor bank at 10kV

Visible light recorded by Phantom camera

WiPP

Reconnection pulse last ~ 20µs, One frame recorded per shot.

Plasma gun array

Reconnection current layer —

Toroidal magnetic field coil, pulsed up to 16kA

Frames combined from ~ 50 shots.

3D Perturbations Observed

3D Perturbations Observed

TREX geometry implemented in Cylindrical VPIC

High spatial resolution through Jogging-method

Elongated geometry:
$$\mu_0 J_{\phi} \approx dB_z/dR$$

Jogging : $dR = V_{layer} dt$

→
$$J_{\phi} \approx (dB_z/dt) / \mu_0 V_{layer}$$

 $J_z \approx (dB_{\phi}/dt) / \mu_0 V_{layer}$

Magnetic probes are optimized for high frequency response (10MHz) $V_{laver} \sim 40$ km/s \rightarrow 4mm spatial resolutions!

High spatial resolution through Jogging-method

Elongated geometry:
$$\mu_0 J_{\phi} \approx dB_z/dR$$

Jogging : dR = V_{laver} dt

→
$$J_{\phi} \approx (dB_z/dt) / \mu_0 V_{layer}$$

 $J_z \approx (dB_{\phi}/dt) / \mu_0 V_{layer}$

Magnetic probes are optimized for high frequency response (10MHz)

 $V_{layer} \sim 40$ km/s \rightarrow 4mm spatial resolutions!

High spatial resolution through Jogging-method

Elongated geometry:
$$\mu_0 J_{\phi} \approx dB_z/dR$$

Jogging : dR = V_{layer} dt

→
$$J_{\phi} \approx (dB_z/dt) / \mu_0 V_{layer}$$

 $J_z \approx (dB_{\phi}/dt) / \mu_0 V_{layer}$

Magnetic probes are optimized for high frequency response (10MHz) $V_{layer} \sim 40$ km/s \rightarrow 4mm spatial resolutions!

Single shot data:

Multiple shots + Jogging-method

WiPPL

Multiple shots + Jogging-method

[Greess+, JGR, 2021]

Multiple shots + Jogging-method

0

Reconnection requires: $\mathbf{E} + \mathbf{v} \times \mathbf{B} \neq \mathbf{p}_{A}\mathbf{J} + (\mathbf{J} \times \mathbf{B} - \nabla \cdot \mathbf{p}_{e})/\text{ne} + \dots$

In 2D kinetic simulations, $\nabla \cdot \mathbf{p}_e$ is large when $\delta_j \sim d_e = c/\omega_{pe}$.

Experimental results at MRX: Wide current layers,

Anomalous Resistivity? [Ji et al., GRL, 2008].

In TREX, the current layer widths coincide with kinetic simulation results $\rightarrow \nabla \cdot \mathbf{p}_{e}$ is likely large

The absolute reconnection rate, E_{rec}, is mainly set by the Drive Voltage applied.

0

4

(a)

-4

-0.5

B_/(5mT)

-2

Z'(m)

Z'/d

4

0.5

0

0

1

R'/d

~,

-1

0

0

(a)

B_/(5mT)

-0.5

-2

Z'(m)

Z'/d

4

0.5

0

0

1

R'/d

~,

-1

TREX implemented at the WiPPL user facility

TREX implemented at the WiPPL user facility

TREX implemented at the WiPPL user facility

Phase diagram of magnetic reconnection.

8kV loop voltage \rightarrow collisionless regime with electron pressure anisotropy, $\tau_{ei} > d_i/(0.1V_A)$

Future: Reach Fully Collisionless Regime

Phase diagram of magnetic reconnection.

8kV loop voltage \rightarrow collisionless regime with electron pressure anisotropy, $\tau_{ei} > d_i/(0.1V_A)$

10

Future: Reach Fully Collisionless Regime

Phase diagram of magnetic reconnection.

8kV loop voltage \rightarrow collisionless regime with electron pressure anisotropy, $\tau_{ei} > d_i/(0.1V_A)$

10

Future: Reach Fully Collisionless Regime

Le et al., JPP, 2015

-2

2

 z/d_i

-2

Single shot, jogging method

Conclusion

- Reconnection layers, ~1m, are characterized at mm resolution
- Strong drive yields high Lundquist number regime with electron pressure anisotropy
- Embedded current layers are observed.
- Reconnection is fast
- The current layer width is narrow → ∇·P_e likely breaks the Frozen-In-Law.
- TREX has now entered the regime of <u>kinetic reconnection</u>!
- The WiPPL user facility is open for business; see Cary Forest or visit: wippl.wisc.edu

Thank you for your attention