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Briefly about me...

| am a chemical engineer from Mexico
turned nuclear engineer.

Before joining, PSU, | worked for 13 years
at the National Polytechnic Institute in
Queretaro, Mexico.

| have been involved in fusion research
since 1998, when | was a grad student at
the University of lllinos.

Current chair of the IEEE NPSS Fusion
Technology Committee (until Dec 2022).

| work mainly on the field of plasma-
material interactions, and more recently |
have started working in neutronics
simulation for fusion devices.

| am a cat person, | play squash and | put
together Japanese mecha models.
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FUSION AND NEUTRONS

In 1935, during his research tenure at the legendary Cavendish
Laboratory, the Australian physicist Mark Oliphant achieved the first
fusion reactions on Earth.




Fusion energy is nuclear in origin

* Nuclear reactions produce or consume energy because some
nuclear mass is lost or gained during the reaction.

* Mass lost — Energy is released

* Mass gained — Energy is absorbed

— 2
A+B->C+D Am =mq +mp — (my + mp) [E—Amc }
cC = 3)(108 m/S
Am >0 : Reaction is endothermic (requires energy to proceed)
5 MeV 16 Ji
c“=9315 —=9x10"°—
Am <0 : Reaction is exothermic (releases energy when it proceeds) amu kg
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Energy of DT fusion products 25+ 3u- *we+n 0 =17.6 Mev
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Neutron energy spectrum: fission vs fusion
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Fusion cross sections

* The cross section is proportional to the probability of fusion
happening at a given energy.

* [t is derived from quantum mechanical calculation given the
effective potential previously described.

 There are semiempirical fits to the measured and calculated cross
sections that are quite useful to make numerical calculations of
fusion power.

 This document contains such fits for different fusion reactions.
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https://pure.mpg.de/rest/items/item_2131598/component/file_2131597/content

Fusion reaction cross sections
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Collision frequency

e Consider particles A in motion colliding with particles B stationary (or very
low energy).

* The average distance A traveled by an A particle with velocity v before it
Interacts with B is given by:

(A1) = 1 np is the particle
ngo(v) density of species B

* Therefore, the average time elapsed between two consecutive interaction
events is given by: ) .

T) = = Greek letter “nu” Letter “v”
© v ngo(v)v 1

* And the collision frequency “per particle A” is therefore: v= %z ngo(v)v
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Reaction rate for a given velocity

* S0, the volumetric interaction rate r is just the particle density of A
(n,4) within the volume times the fusion frequency:

r(v) = nyngo(v)v

* And the total reaction rate R is given by the following volume
integral:

R = Jr(v)dV = jnAnBa(v)vdV
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Why are neutrons important?

James Chadwick, a British scientists at the Cavendish Laboratory,

discovered the neutron in 1932. This was a giant leap in the
understanding of atomic and nuclear physics.




The importance of neutrons in fusion devices \)
* Neutrons deposit energy. f }
;\/

* Neutrons do damage. mh
* Neutrons produce tritium. =

* All these processes involve interaction of
neutrons with its environment
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Some neutrons interactions

Interaction m Result Relevance

Elastic scattering Liquid Heat transfer Energy extraction from fusion reactor

Elastic scattering Solid Defect formation Material lifetime reduction

Absorption Solid/Liquid Formation of radioactive  Activation of materials, beta and
isotopes gamma emission

Nuclear reaction Solid/Liquid Formation of Tritium breeding, material swelling,
helium/hydrogen additional energy production from
Fission fission
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Neutron damage in solids

Frenkel Pair
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Cross Section (bharns)

Neutron damage to °°Fe
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10-5

ip-10

n = 8.5x10%% ¢cm™3
E;, = 14 MeV

E; =25eV

o, = 2x107%% cm?

¢ = 1x1013 cm™2s71

y = 0.07

R, yE; dpa
— = =2%x107°— =
= 0s <4Ed> ) 0 S 63 dpa/yr

Twice the value of a
fast nuclear reactor!
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Los Alamos Spallation Radiation Effects Facility (LASREF)
Omega West Reactor (OWR)

Neutron damage in solids Rotating Target Neutron Source Il (RTNS-II)
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Neutron damage in solids

Tungsten thermal conductivity
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Neutron reactions

* Besides the collisional damage associated with neutron scattering,
other stuff can happen:

* Nuclei can capture a neutron and become radioactive, emitting alpha,
gamma or beta radiation. Activation

* If the neutron reaction generates a proton or an alpha particle, the
material will start accumulating gases (hydrogen and helium, respectively)
Swelling
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Hydrogen producing reactions examples

Cross Section (harns)
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n,p C¥s for Fe isotopes
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Helium production reaction examples

n,alpha reaction C¥s for W isotopes n,alpha reaction CXs for NHi isotopes
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Stainless steel swelling vs irradiation damage

o —0O— swelling rate - experimental data
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Tritium requirements

Currently, to operate large nuclear fusion experiments with tritium, it is obtained as a byproduct
from fission reactors, nuclear fuel reprocessing facilities or from decommissioned nuclear
weapons.

This tritium can be used as start-up material for experimental fusion reactors, but the expectation
is that a commercial fusion reactor should produce its own tritium.

The tritium self-sufficiency of a fusion device is measured by the tritium breeding ratio (TBR),
which is equal to 1 if each neutron from the reactor produces a tritium nucleus.

Since tritium decays relatively fast (12.5 years), some irreversible tritium losses occur if tritium is
not recovered immediately.

Also, any tritium recovery technology will not 100% efficient.
This means that more than one tritium be formed per emitted neutron.

Factors such as tritium burnup fraction in the plasma, the size of the planned tritium reserve and
the first wall material choices affect the value of the required TBR to achieve self-sufficiency, but
a value of 1.15 is often quoted as a reasonable figure to ensure self-sufficiency.
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Tritium requirement

P : neutron power (MW)

mr = 0.192P my: tritium consumption (g/day)

A 250 MW neutron power (312.5 MW total) fusion device needs to produce 48 g of tritium per day.

Tritium / Deuterium

. B from External Sources

piatl Bbars Mot et S
1 T—4 Long Term Storage
For referengg, a CANDU reactor (the main | | |l ) e
source of tritium currently) produces tritium at a | | 1 7 O
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Test Blanket Processing —l T

T Atmosphere and Vent

I Detritiation Systems
e | g | | Aoy | ¥

Release Release

i Automated Control System & (Hard Wired) Safety System |

M. Glugla et al. Fus. Eng. Des. 82, pp. 472-487 (2007)
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Tritium production in fusion devices

e By far the most popular route for producing tritium is the reaction
between a neutron and the SLi isotope:

°Li + n— 3H + *He

* Both solid and liquid breeding materials have been proposed.
* Li ceramics are the most popular solids.
* Molten Li, Pb-Li and FLiBe are the most popular liquids.
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A solid breeder blanked desigh example

First Wall with rectangular
cooling channels

Neutron multiplier
pebble bed layer (1mm ¢)

Tritium breeder
pebble bed layer

M. Enoeda et al. Proc. 21st Int. Conf. on Fusion Energy (Chengdu, China, 2006)
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A liquid breeder blanket module design example

He sub- » He-1 .
systems Pb-17Li coolant

€ manifold
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Practical aspects of neutronics simulations in fusion
devices

Stanislaw Ulam, a Polish-American mathematician and physicist,
developed what we now know as the Monte Carlo method while

working at Los Alamos National Laboratory in the Manhattan
Project. Monte Carlo methods are key in the simulation of neutron
transport




Key elements

* A volumetric, non-homogeneous fixed neutron source with a
complex shape.

* Regions of space with various compositions.

* A neutron reaction database for every material present in the
system at any given time.

* Values of the neutron flux everywhere within the system at all
times.
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Mass, momentum and energy conservation

Plasma transport

1/0 By 0 v )+1ar—s
"\t~ 2B,00" )" "¢ TV ap

3,1\ /9 B, 9 19 5
= _ "n5/3
2 (V) <6t 2B, dp p) (V)P neksTe| + dp (qe o kelel ) fe

5

3,1\ /9 B, 9 19
31 _ 5/3
( ) <6t 2B,9p" )KV} nikpTi] + ap(qe+2k3”) Fi

Mechanical equilibrium

0y  pBy 0y J?Ry 0 (G O 4
- = ( ) -——Ugs +Jjcp)
dt 2By dp) ugp dp\J 9dp/ Z2mp

A numerical code is required to obtain density and temperature profiles as a function of machine
parameters (geometry, plasma current, magnetic field, transport coefficients, auxiliary heating, etc...)
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ASTRA simulations
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Neutron flux calculation

* The multigroup neutron diffusion equation coupled set needs to be
solved to find the energy-resolved neutron flux within the system:

Out- scattering Fission

@yo(©r 20 z XY

g'%g '=1 :
such as KENO, SERPENT, M

Neutr
Diffusion solve { EXternalsource yion giffusion equation for 44 In-scattering |
leakage using the Monte Carlo method, with up to 256 groups
Absorption These macroscopic cross sections and diffusion coefficients are

composition-dependent.
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Coupling neutron transport and CAD

* Important efforts are currently
underway for linking Monte Carlo
neutron transport simulations
with CAD geometry specification.

* This departs radically from the
cumbersome constructive
geometry definitions typical of
most neutronics codes

e Constructive geometry is
sufficient for rough/exploratory
model | ng CAG |S necessa ry for A. M. Ibrahim et al. Nuclear Technology 175, pp. 251-258 (2011)
deta | Ied G’ICCU rate mOdel | ng P. Wilson et al. Fusion Eng. Des., 83, pp. 824 (2008)
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Nuclear reaction kinetics

Consumption to
Removal flow produce other isotopes
Decay

N .\
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Fusion system neutronics simulations

* Neutron
description

ASTRA { source

e Nuclear
reaction
kinetics
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Code interlinking scheme

Density and
temperature
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Conclusions and final thoughts




Final thoughts

* Neutronics in fusion devices is important, since neutrons damage
materials, activate stuff and produce tritium.

e Simulation of neutronics for fusion devices requires:
* Neutron transport calculations (OpenMC, MCNP, KENO)
* Plasma equilibrium Calculations (ASTRA, CORSICA)
* Nuclear reaction kinetics (ORIGEN, FISPACT)

* Advanced CAD processing for meshing and geometry definition (SW,
AutoCAD, CAD-processing libraries).

* Information from these codes requires a coordination and
processing effort to ensure adequate information flow.
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Find out more!

* G. S. Was. “Fundamentals of Radiation Material Science”. ISBN
978-1-4939-3438-6

* Y. Wu. “Fusion Neutronics”. ISBN 97/8-981-10-5469-3

 UW Neutronics Center for Excellence

 LANL MCNP Home

* ORNL ORIGEN Home

* Plasma equilibrium codes from Woodruf Scientific
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https://link.springer.com/book/10.1007/978-1-4939-3438-6
https://link.springer.com/book/10.1007/978-981-10-5469-3
https://fti.neep.wisc.edu/fti.neep.wisc.edu/ncoe/ngroup.html
https://mcnp.lanl.gov/
https://www.ornl.gov/team/scale/activation-depletion-and-decay
https://woodruffscientific.com/equilibrium

Contact

* mhieto@psu.edu

* Nuclear Engineering Department Page
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