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What time is it? Game time!!

• I am a huge fan of team sports, especially basketball and football (soccer in the US)

• I believe there are many similarities between how scientists and athletes prepare/operate

• Living on 3 continents, I have a strong interest in history of civilizations and cultures, as well as history of 

science
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Low Temperature Plasmas and Applications



Plasmas?
• Ionized gases

• 4th state of matter

• 99.9% of the 

visible universe

• Made of neutral 

particles, free 

electrons, ions, 

electric fields, 

photons

• Span over several 

orders of 

magnitude of 

densities and 

temperatures



Current Grand Challenges of Engineering

• Make solar energy economical

• Provide access to clean water

• Provide energy from fusion

• Manage the nitrogen cycle

• Engineer the tools for 
scientific discovery

• Improve CO2 sequestration

Perovskite solar cell

Spherical Tokamak at PPPL
Electric propulsion for 

spacecraft

Star Wars twin ion 

engine fighters

Plasma-assisted ammonia 

synthesis

Zhang et al. ACS Plasma Proc Polym (2018) Aihara et al. ChemComm(2016) 

US Academy of Engineering



LT Plasmas Impact our Every-day Life

Plasma Science: Advancing Knowledge in the National Interest, National Research Council (US, 2007)

01 — Plasma TV

02 — Plasma-coated jet turbine blades

03 — Plasma-manufactured LEDs in panel

04 — Diamond-like plasma CVD eyeglass coating

05 — Plasma ion-implanted artificial hip

06 — Plasma laser-cut cloth

07 — Plasma HID headlamps

08 — Plasma-produced H2 in fuel cell

09 — Plasma-aided combustion

10 — Plasma muffler

11 — Plasma ozone water purification

12 — Plasma-deposited LCD screen

13 — Plasma-deposited silicon for solar cells

14 — Plasma-processed microelectronic

15 — Plasma-sterilization in pharmaceutical production

16 — Plasma-treated polymers

17 — Plasma-treated textiles

18 — Plasma-treated heart stent

19 — Plasma-deposited diffusion barriers for containers

20 — Plasma-sputtered window glazing

21 — Compact fluorescent plasma lamp



The Semiconductor Success Story

Anisotropic Plasma Etching

Wu et al, J. Appl. Phys. 108, 051101 (2010)



Plasmas and Applications: Thermal VS Non-Thermal

PLASMA MEDICINE

FLOW CONTROL

Plasma off Plasma on

DEPOLLUTION

REFORMING

SPARK PLUG

PLASMA WELDING

PLASMA CUTTING

PLASMA ETCHING

PLASMA DEPOSITION

Thermal plasmas:

Tg ~ Te (2, 000- 10, 000 K)

Non-thermal plasmas:

Tg << Te (10, 000 K)



Generation of LT Plasmas and Basic Properties



Gas Discharges as Low Temperature Plasmas
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• Electrically driven

• Different excitation sources can be 

employed: DC, AC, RF, Microwave, 

nanosecond pulsed,…

• The source of energy is the E-field

• High E-fields lead to ionizing collisions

• Charged particles collisions with 

neutrals cause the main energy transfer 

from the electric field energy to the gas

• When the energy transfer of electrons to 

neutral particles is not very fast, the 

energy of electrons (=Te) can be 

significant larger than the neutral 

particles energy (=Tg): Tg << Te

We use electric fields instead of heat!

Laser beam

Quartz sleeve Stainless steel electrode
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Dielectric barrier discharge

Surface dielectric barrier discharge



Overview of Atmospheric Pressure LT Plasmas

Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002



1 eV ≈ 11,606K

LT Plasmas are Rich of Physics and Chemistry

• Span over 12 orders of magnitude for ne

• Often low ionization fraction (degree): 
𝒏𝒆

𝑵
< 𝟏%

• Ions and neutrals temperatures are near room 

temperature: Ti ~ Tg ~ 
𝟏

𝟒𝟎
eV

• Electron temperature can reach several eV: Te ~ 1-10 

eV

• Highly non-equilibrium

• Highly reactive plasmas can be generated near room 

gas temperatures

• In presence of molecular gases, dissociation can 

occur generating a very rich and complex electrons-

driven chemistry: LT plasma = chemical processor



Plasma Interactions with Surfaces: Formation of Sheaths

Plasma are surrounded by Sheaths!

sheath

sheath

Plasma

sheath

sheath

• The sheath is the boundary layer between a 

plasma and a solid surface (electrodes, substrate, 

container walls, …)

• It acts to balance electron and ion currents lost 

from a plasma

• Sheaths are characterized by a strong E-field, 

low electron density

• Sheaths form as ions are accelerated into 

surfaces

• Sheaths have an important role for applications 

relevant to: removal of surface material and ion 

implantation



Sheaths size depends on the plasma density (pressure)

𝑬 = −𝛁𝝓

• It’s the distance scale over which significant 

charge densities can spontaneously exist

The Debye length is the characteristic 

length scale of a plasma

𝜆𝐷𝑒 =
𝜀0𝑇𝑒
𝑒𝑛𝑒

1
2

𝜆𝐷𝑒 𝑐𝑚 = 740 𝑇𝑒/𝑛𝑒 Te in eV and ne in cm-3

• Sheath thickness ls provided by Child-Langmuir 

sheath model:

Using Poisson’s equation:

𝜙 = 𝜙0𝑒
− 𝑥 /𝜆𝐷𝑒

• For Te = 4 eV and ne = 1010 cm-3, λDe ~ 148 µm (quite small!) 

𝑙𝑠
𝜆𝐷𝑒

=
2

3

2𝑒Δ𝜙

𝑇𝑒

3/4



Comparison between Hot and Cold Plasmas

6 mm

EFDA JET: Joint European Torus



Energy Partition and Transfer in LT Plasmas



Collisions and Elementary Reactions: Atomic Gas

Ar

electron energy [eV]

• Elastic collisions: e- + Ar → Ar + e-

• Electronic excitation collisions: e- + Ar → Ar* 

+ e- → Ar + e- + photons

• Ionizing collisions: e- + Ar → Ar+ + e- + e-

• Cross sections from different databases are 

compiled on the LXCAT website: 

https://us.lxcat.net/

• Databases: IST-Lisbon, Morgan, Phelps, 

Itikawa, Triniti, Hayashi, …

• 1 eV ~ 1.6×10-19 J

We use cross sections to quantify the 

probability that a process may occur

* +



Energy Partition in a Molecular Gas: Air
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Where does the energy from the electrons go? Yuri Raizer: Gas discharge Physics

• E/N, electric field divided by total number 

density

• 1 Td (Townsend) = 10-17 V.cm2

• The rates of electron impact processes depend 

exponentially on E/N

• At low E/N values (< 10 Td): Energy coupled 

preferentially to vibrational excitation of O2

• For 10 Td < E/N < 100 Td: Energy coupled 

preferentially to vibrational excitation of N2

• For E/N > 100 Td: Energy coupled into electronic 

excitation of N2, O2 dissociation and ionization
High E/N values result in high reactivity and rapid electron-

driven processes. This is for instance achieved using 

nanosecond pulsed discharges



Energy Transfer in an Elastic Collision (1)

• Expressing energy and momentum balances 

yields:

WL = final energy for particle m2

W= initial energy for particle m1

𝑊𝐿

𝑊
= 𝜁𝐿 =

4𝑚1𝑚2

(𝑚1 +𝑚2)
2 𝑐𝑜𝑠

2𝜃2 =
2𝑚1𝑚2

𝑚1 +𝑚2
2 (1 − 𝑐𝑜𝑠𝜃𝐶𝑀)

• What is now the average energy transfer per collision?

𝜃2 =
𝜋

2
−
𝜃𝐶𝑀
2

CM = Center of Mass (given)



Energy Transfer in an Elastic Collision (2)

Fraction of energy transferred in one collision:

• For electron – neutral collision (hard sphere model)

2𝑚1𝑚2

(𝑚1 +𝑚2)
2 ≈

2𝑚𝑒

𝑀
≈ 10−4

Electrons transfer little energy in elastic collisions with neutrals: Te >> Tg

• For ion – neutral collision (with same mass)

2𝑚1𝑚2

(𝑚1 +𝑚2)
2 =

1

2

Ions neutral collisions transfer significant energy in elastic collisions: Tion ~ Tg

Equilibration rates depend on the mass ratios



What does Temperature mean?

Temperature is actually related to the mean kinetic energy!

Particle energy

Concept of thermal equilibrium in statistical mechanics: Maxwell-Boltzmann 

distribution function of the particle energy

• An electron temperature (Te) of 1 eV therefore means that the plasma has an electron energy 

distribution function (EEDF) with a mean energy of 3/2 eV 

• Ionization is caused by high energy 

electrons in the tail of the distribution!



Rate Coefficients

Electron-Argon Rate Coefficients

• Rate coefficient is the average of the 

cross section σ (VR) of the process 

over the Maxwellian distribution

• K(Te) = <σ VR>Maxwellian

• VR = relative velocity of colliding 

particles

• The knowledge of rate coefficients is 

indispensable for establishing 

accurate collisional-radiative models 

of plasmas



Deviation from Maxwell-Boltzmann Distribution

Bolsig+: Boltzmann equation solverThe EEDF is not necessarily 

Maxwell-Boltzmann!

• It depends on the ionization degree

• Assuming M-B when it is not can hugely 

impact rates with high threshold energy

• Plasma codes have a Boltzmann solver 

(EEDF can depend on gas composition)



LT Plasmas Modeling and Timescales

Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002

Mark J. Kushner, University of Michigan

• About 12 orders of magnitude in timescales

• Integrating timestep (stability, accuracy): Δt

• Dynamic timescale (to resolve the evolution of plasma 

phenomena): ΔT



Case Study #1: Plasma-Assisted Ignition



C2H4 Ignition below Auto-ignition Temperature

OH emission from plasma and flame

• Ignition induced by radicals generated in the plasma (primarily O and H atoms)

• Ignition occurs at temperature ≈ 200 K below autoignition

• Ignition begins near edges of the plasma (higher energy loading)

• Flame propagates to the center of the plasma

Yin et al, IEEE Trans Plasma Sci. 2011



Case Study #2: Inactivation of Viruses and Bacteria



RONS from Air Plasmas for Virus Inactivation

Moldgy et al, J. Phys. D: Appl. Phys. 53 (2020) 434004

• Reactive components from plasma chemistry: 

O3, NOx, OH, O, H2O2, N2
+, O2

+, O2
-, UV light, e-

• Comparison of surface decontamination 

efficiency of 4 different plasmas

• Strong correlations between generation of gas 

phase N2O5 and inactivation

FCV = Feline CaliciVirus (surrogate of human norovirus = stomach flu)

RONS = Reactive Oxygen Nitrogen Species



Case Study #3: Polymer Etching



Etching from O, H, OH Produced by a RF Plasma Jet

Kondeti et al, J. Vac. Sci. Technol. A 38(3)

Luan et al, J. Phys. D: Appl. Phys. 50 (2017) 03LT02

• Etching of polystyrene, PMMA 

(poly methyl methacrylate) and 

PVA (poly vinyl alcohol)

• Ar+1% O2, Ar+1% air, Ar +1% 

H2O plasma jets

• Correlation between O flux at 

the surface and polymer 

etching rate

• Etching probability of 

polystyrene by OH at least one 

order of magnitude greater than 

etching of polystyrene by O 

radicals

Using plasma to modify surface properties of polymers: 

Improving adhesion, printing and biocompatibility



Non-equilibrium Flows during Earth Atmospheric Reentry

• Earth reentry occurs at hypersonic velocities: 5-20 km.s-1

• Radiative fluxes from the shock-produced plasma account for up to 50% of the total heat encountered by a 

spacecraft during reentry

• The plasma generated is under non-equilibrium conditions

• Designing effective thermal protective systems (TPS) require accurate quantification of these radiative fluxes

• Experiments performed in ground facilities use plasma torches and arc jet plasmas

MacDonald et al, J. Thermophys. Heat Trans 29.1 (2015)

Plasma Torch Facility at Ecole Centrale Paris



Summary

• LT plasmas are everywhere around us

• They enable many of our modern technologies

• LT plasma physics a multidisciplinary field

• Their high non-equilibrium feature provides an almost infinite richness

• LT plasmas are relatively easy to generate in the lab. This leads to the research field being exciting 

and fast-paced

• Ongoing work involves theory, modeling, computational and experimental efforts

• Come join us!




