Introduction to Plasmas, Part II How do we model the behavior of a plasma

Jeremiah Williams, Wittenberg University

E-mail: jwilliams@wittenberg.edu

SULI Introductory Course in Plasma Physics 14 June 2022

A bit about me

Recap: Plasmas – The first state of matter

- Physical systems whose intrinsic properties are governed by collective interactions of large ensembles of free charged particles
- Spans a wide densities, temperatures and spatial scales

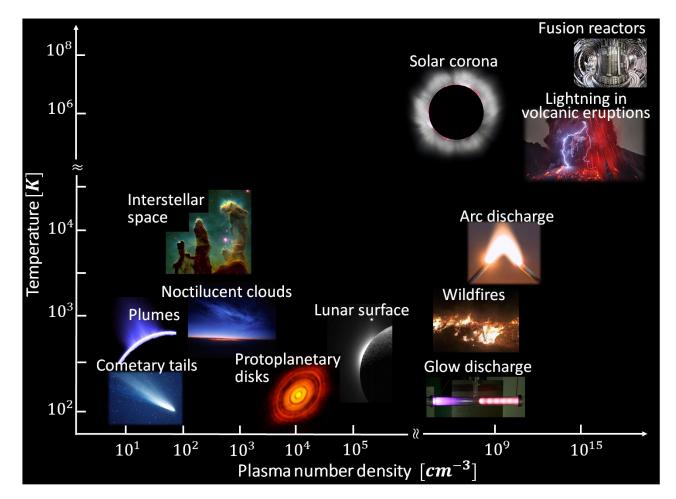


Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics

Recap: Plasmas - Characteristic quantities

- Plasma Density, n_s
- Temperature, T_s
- Thermal Speed

$$v_{th,s} = \sqrt{\frac{k_B T_s}{m_s}}$$

• Debye Length

$$\lambda_D = \sqrt{\frac{k_B T_e \epsilon_o}{q_e^2 n_e}}$$

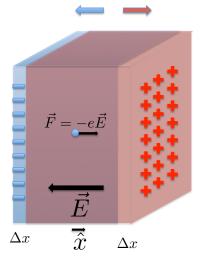
• Plasma Frequency

$$\omega_{ps} = \sqrt{\frac{q_s^2 n_s}{m_s \epsilon_o}}$$

Collision Frequency

$$\nu_{ns} = n_n v_{th,s} \sigma_n$$

• Cyclotron Frequency



Today: How do we describe the behavior of a plasma

• The dynamics of a plasma is determined by the self-consistent interaction between electromagnetic fields and a statistically large number of particles.

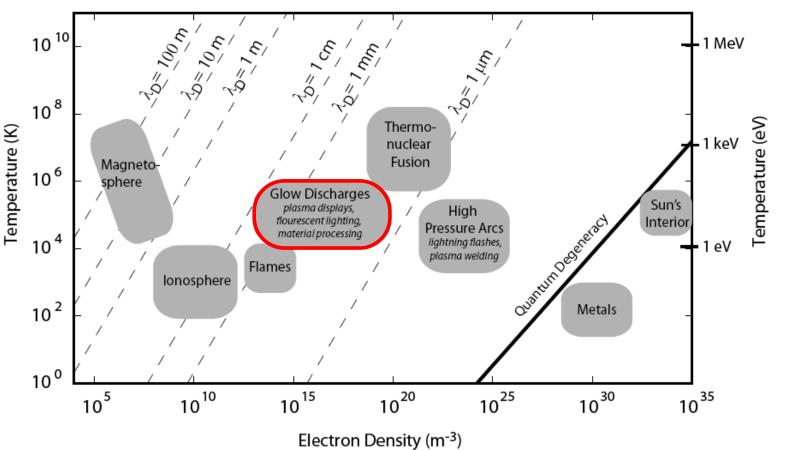
Lorentz Equation

Use knowledge of $\vec{E}(\vec{x},t)$ and $\vec{B}(\vec{x},t)$ to find \vec{x}_j and \vec{v}_j for every particle

 $\underbrace{\text{Maxwell Equations}}_{\text{Use knowledge of } \vec{x_j} \text{ and } \vec{v_j} \text{ for every particle to find } \vec{E}(\vec{x},t) \text{ and } \vec{B}(\vec{x},t)$

• Conceptually, this is simple but in practice quite hard

Why is this so hard?

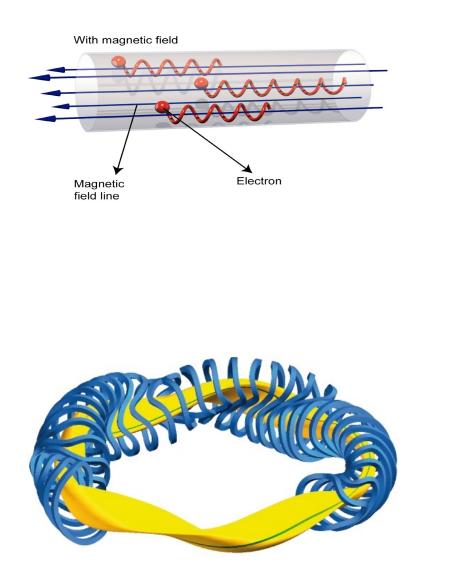


$$T_e = 3 \text{eV}, T_i = \frac{1}{40} \text{eV}$$
$$V = 3 \times 10^{-3} \text{m}^3$$
Timescales
$$\tau_e \sim 10^{-9} s, \tau_i \sim 10^{-6} s$$
$$\tau_d \sim 10^{-2} s$$

 $n_p \sim 10^{15} \mathrm{m}^{-3}, n_d \sim 10^{10} \mathrm{m}^{-3}$

• Number of particles $N \sim 10^9$ particles

Hierarchy of Models

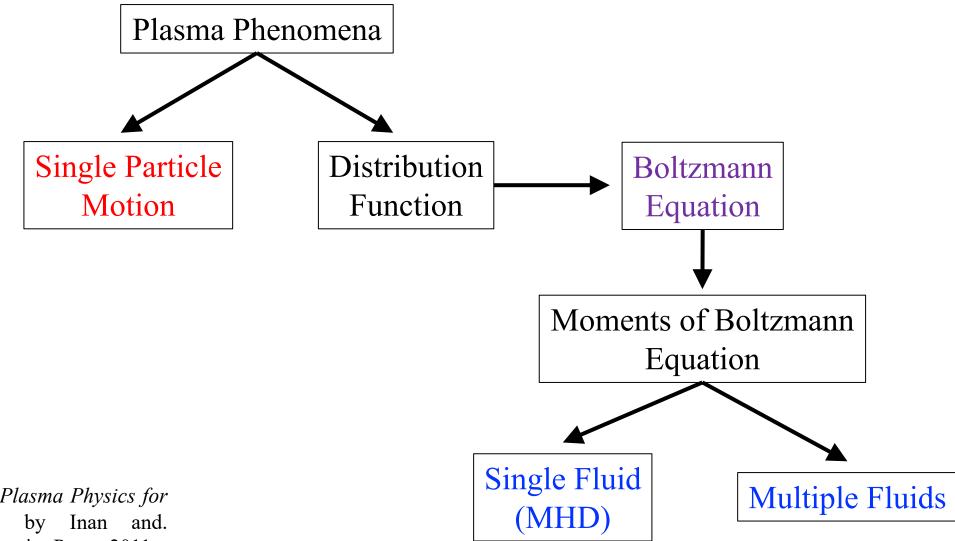


Single particle motion (particle pushing)

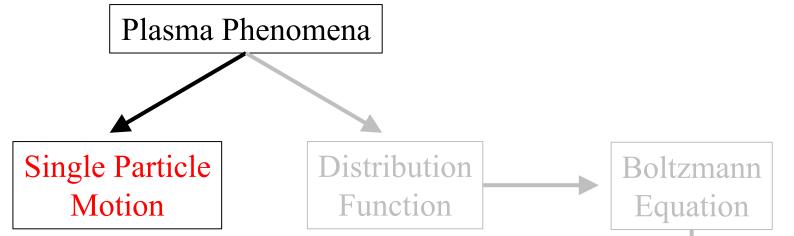
Kinetic Theory (distribution functions)

Fluid Model (moments, conservation eq.)

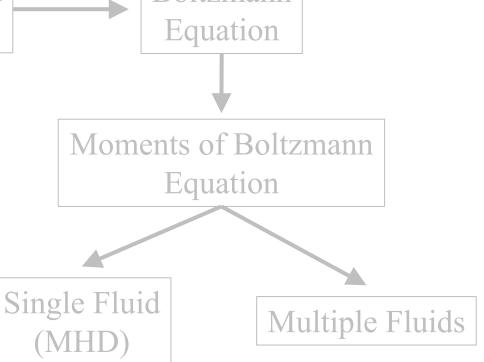
Hierarchy of Models



Adapted from *Principles of Plasma Physics for Engineers and Scientists* by Inan and. Gołkowski, Cambridge University Press, 2011.



- Simplifying assumptions:
 - Charged particles do not interact with one another and their motions do not constitute a large enough current to significantly affect the EM fields.
 - Motion is non-relativistic and collisions can be ignored



• Consider an ion in fusion reactor

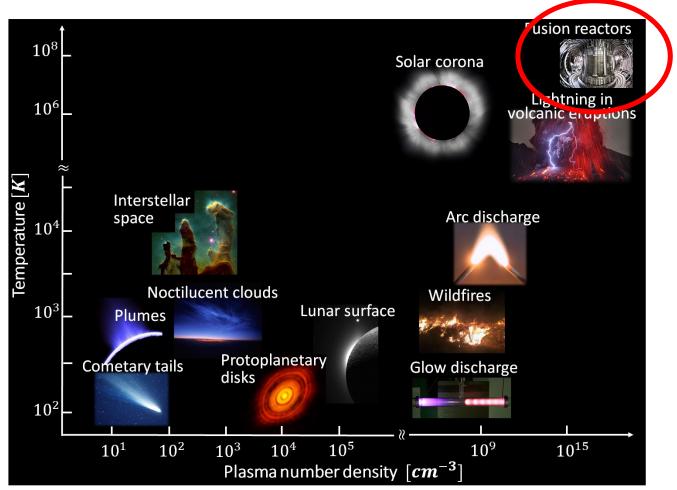


Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics

 $n_i \sim 10^{20} \frac{\text{ions}}{\text{m}^3}, \ T_i = 10^8 \text{ K}$

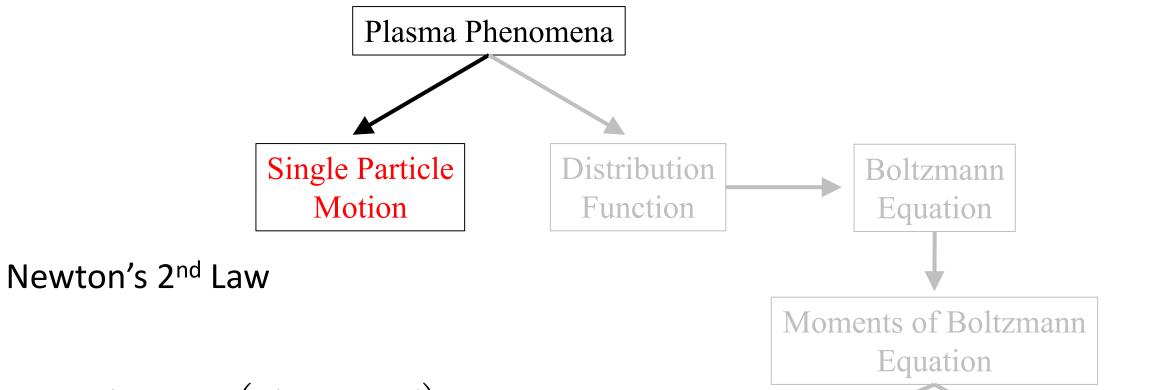
$$k_B T = \frac{1}{2} m v_{th}^2$$

$$v_{th} \sim 6 \times 10^5 \frac{\mathrm{m}}{\mathrm{s}}$$

ion would travel ~10 km before colliding with another ion

Hierarchy of Models

ullet



Single Fluid

(MHD)

Multiple Fluids

$$\vec{F}_{net} = q\left(\vec{E} + \vec{v} \times \vec{B}\right) = m\vec{a}$$

 e^+

• Consider a charged particle (proton) in a constant, uniform magnetic field

$$\vec{B} = B_o \hat{z} \qquad \qquad \vec{E} = 0$$

$$\vec{F}_{net} = q \left(\mathbf{v} + \vec{v} \times \vec{B} \right) = m\vec{a}$$

$$qvB = m\frac{v^2}{R}$$

(z out of screen)

 ${\mathcal X}$

• Consider a charged particle in a constant, uniform magnetic field

$$\vec{B} = B_z \hat{z} \qquad \vec{E} = 0$$

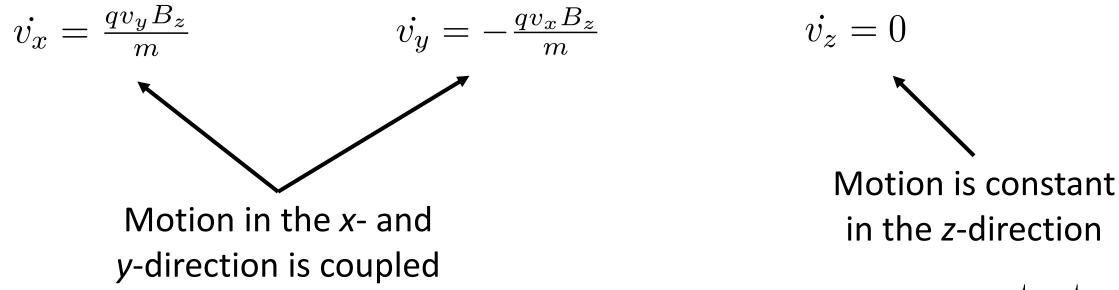
$$\vec{d} \vec{v} \quad \vec{d} \vec{v} \quad \vec{D}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \frac{q}{m}\vec{v} \times \vec{B}$$

Dot represents a time derivative

$$\dot{\vec{v}} = \frac{q}{m}\vec{v} \times \vec{B}$$

• In component form



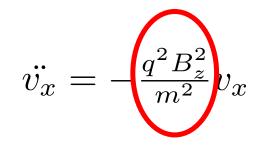
 $v_z = \text{constant}$

$$\dot{v_x} = \frac{qv_y B_z}{m}$$

$$\dot{v_y} = -\frac{qv_x B_z}{m}$$

• These can be decoupled by taking a time derivative

$$\frac{d}{dt}\dot{v_x} = \ddot{v_x}$$



$$\ddot{v_y} = -\omega_c^2 v_y$$

$$\omega_c \equiv \frac{|q|B_z}{m}$$

• This can be solved (and we leave it to you to verify that it works)!

$$v_{x} = v_{\perp} \cos \left(\omega_{c}t + \phi_{o}\right)$$

$$v_{\perp} = \sqrt{v_{x}^{2} + v_{y}^{2}}$$
arbitrary phase to match the initial velocity

$$v_y = \mp v_\perp \sin\left(\omega_c t + \phi_o\right)$$

accounts for a positive or negatively charged particle

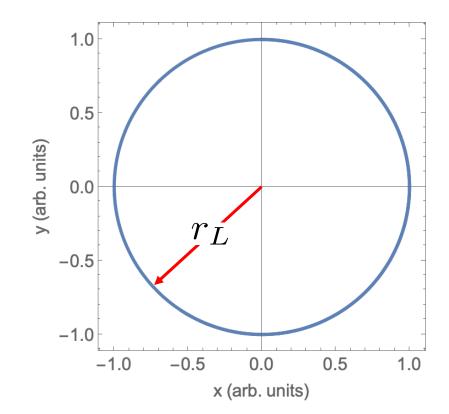
$$\omega_c \equiv \frac{|q|B_z}{m}$$

$$v_x = v_\perp \cos(\omega_c t + \phi_o)$$
 $v_y = \mp v_\perp \cos(\omega_c t + \phi_o)$

• Integrate with respect to time to find the position

$$x(t) = \frac{mv_{\perp}}{|q|B_o} \sin(\omega_c t + \phi_o) + x_o$$
$$y(t) = \pm \frac{mv_{\perp}}{|q|B_o} \cos(\omega_c t + \phi_o) + y_o$$

$$\omega_c \equiv \frac{|q|B_z}{m}$$
 $r_L \equiv \frac{mv_\perp}{|q|B_o}$



• What if there is an electric field?

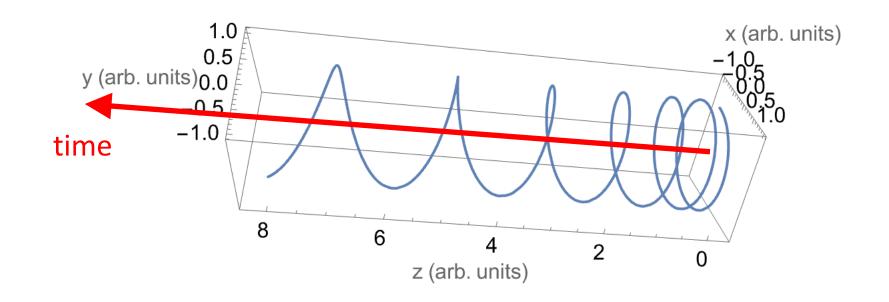
$$\vec{B} = B_z \hat{z} \qquad \qquad \vec{E} = E_z \hat{z}$$
$$\vec{F}_{net} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) = m\vec{a}$$

• In component form

$$\dot{v_x} = \frac{q}{m} (v_y B_z)$$
 $\dot{v_y} = -\frac{q v_x B_z}{m}$ $\dot{v_z} = \frac{q E_z}{m}$
Same motion as before constant acceleration in the *z*-direction

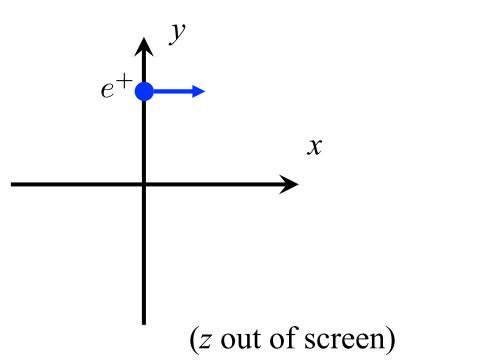
• What if there is an electric field?

$$\vec{B} = B_z \hat{z} \qquad \qquad \vec{E} = E_z \hat{z}$$



• What if there is an electric field?

$$\vec{B} = B_z \hat{z} \qquad \qquad \vec{E} = E_x \hat{x}$$



• What if there is an electric field?

$$\vec{B} = B_z \hat{z} \qquad \qquad \vec{E} = E_x \hat{x}$$
$$\vec{F}_{net} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) = m\vec{a}$$

• In component form

$$\dot{v_x} = \frac{q}{m} \left(v_y B_z + E_x \right) \quad \dot{v_y} = -\frac{q v_x B_z}{m} \qquad \dot{v_z} = 0$$

$$\dot{v_x} = \frac{q}{m} \left(v_y B_z + E_x \right) \qquad \qquad \dot{v_y} = -\frac{q v_x B_z}{m}$$

• These can be decoupled by taking a time derivative

$$\dot{v_x} = -\frac{q^2 B_z^2}{m^2} v_x = -\omega_c^2 v_x$$

• Which we can solve

$$v_x = v_\perp \cos\left(\omega_c t + \phi_o\right)$$

Guiding center moves at a constant speed in the –y direction

$$\ddot{v_y} = -\omega_c^2 \left(v_y - \frac{E_x}{B_z} \right)$$

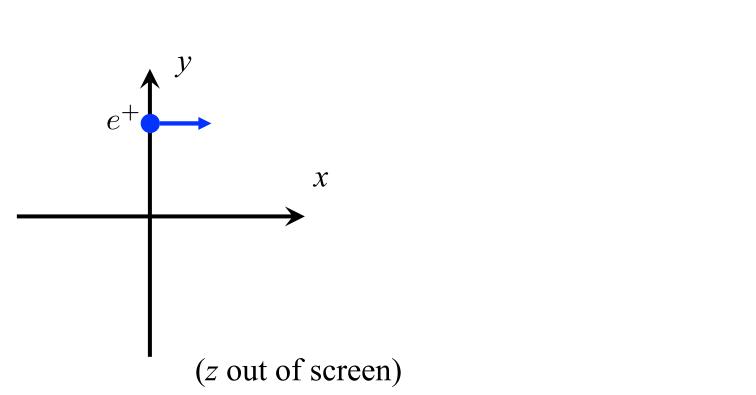
$$v_y = \mp v_\perp \sin \left(\omega_c t + \phi_o \right) - \underbrace{\frac{E_x}{B_z}}$$

Guiding center moves at a

$$\omega_c \equiv rac{|q|B_z}{m}$$

• What if there is an electric field?

$$\vec{B} = B_z \hat{z} \qquad \qquad \vec{E} = E_x \hat{x}$$

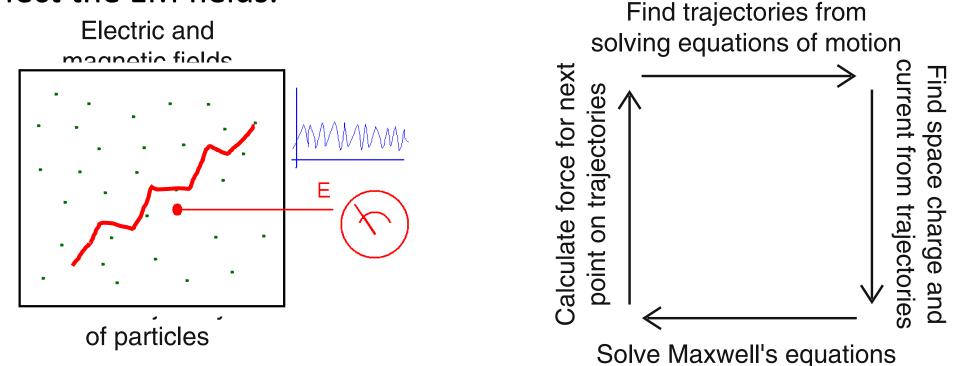




Single particle motion - Key takeaways

- Particle motion can be broken into two types of motion
 - Gyration
 - Particles orbit the applied magnetic field
 - Radius of this orbit is the Larmor radius, $r_L \equiv \frac{mv_\perp}{|q|B_0}$
 - Frequency of the orbit is the cyclotron frequency, $\omega_c \equiv rac{|q|B_o}{m}$
 - Guiding center (what is left when you average over the gyration)

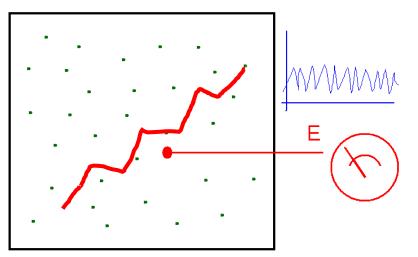
- Can we extend this?
 - Charged particles do not interact with one another and their motions do not constitute a large enough current to significantly affect the EM fields.



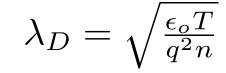
Cartoon figures by G. Lapenta in "Particle In Cell Methods With Application to Simulations in Space Weather"

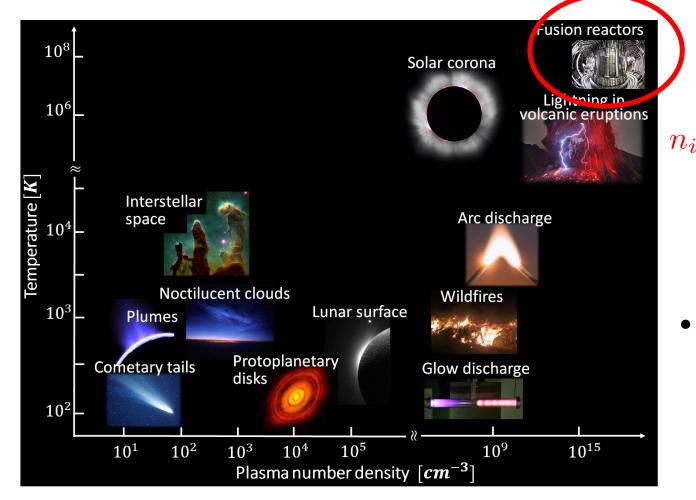
- But...
 - There are many particles that are interacting
 - The interaction depends on the position and velocity of all of the other particles.

$$F_p = q_p \sum_{j=1}^{N} \frac{1}{4\pi\epsilon_o} \frac{q_j}{|\vec{r_i} - \vec{r_j}|^2}$$



Cartoon figures by G. Lapenta in "Particle In Cell Methods With Application to Simulations in Space Weather"





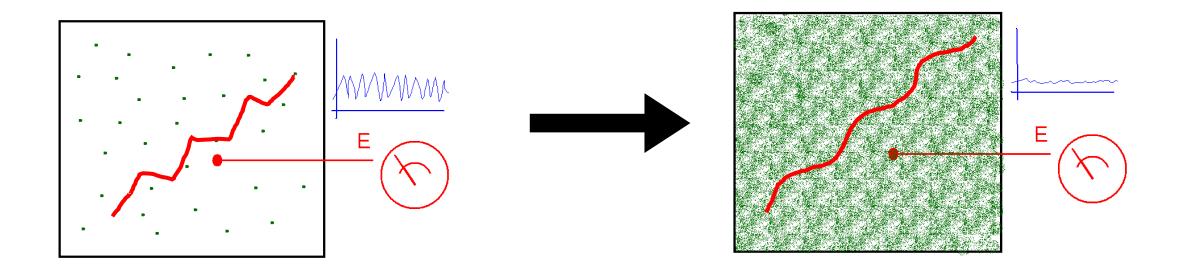
 $n_i \sim 10^{20} \frac{\text{ions}}{\text{m}^3}, \ T_i = 10^8 \text{ K}$ $N \sim 10^{23} \text{ions}$

Is there any hope? $\lambda_D \sim 70 imes 10^{-6} {
m m}$ $N_{3\lambda_D} \sim 10^8$

• Is there another way?

Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics

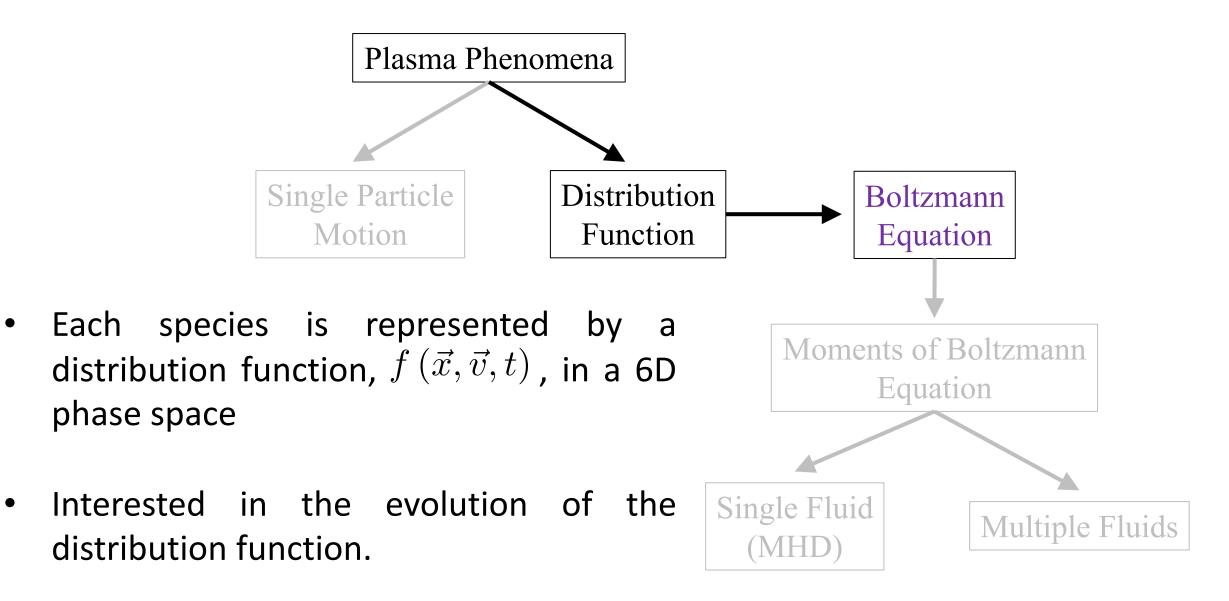
• There is a large number of particles in a volume of size λ_D^3



- Replace the discrete particles with a (smooth) distribution function, $f\left(\vec{x},\vec{v},t\right)$

Cartoon figures by G. Lapenta in "Particle In Cell Methods With Application to Simulations in Space Weather"

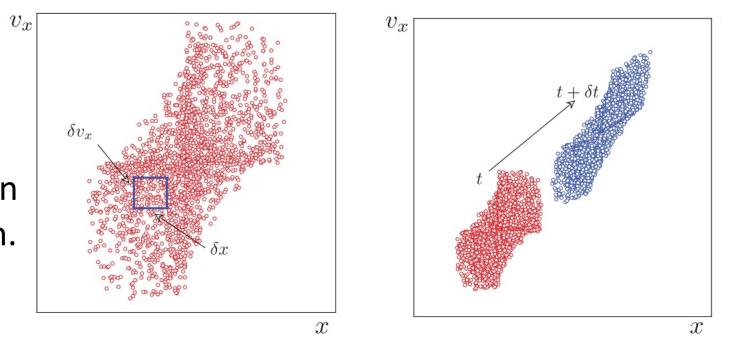
Hierarchy of Models



- Each species is represented by a distribution function, $f\left(\vec{x},\vec{v},t\right)$, in a 6D phase space

 $f(\vec{x}, \vec{v}, t) d\vec{x} d\vec{v} = \#$ of particles in a 6D phase-space volume $d\vec{x} d\vec{v}$

• Interested in the evolution of the distribution function.



Cartoon figures by G. Colonna in "Plasma Modeling: Methods and Applications"

• If we track the distribution function along the trajectories that the particles follow in phase space, the distribution function is conserved.

$$0 = \frac{d}{dt} \left(f\left(\vec{x}, \vec{v}, t\right) \right)$$

$$\vec{v} = \frac{d\vec{x}}{dt} \qquad \vec{a} = \frac{d\vec{v}}{dt} = \frac{q}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right)$$
$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f = 0$$
$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f = \left(\frac{\partial f}{\partial t} \right)_c$$

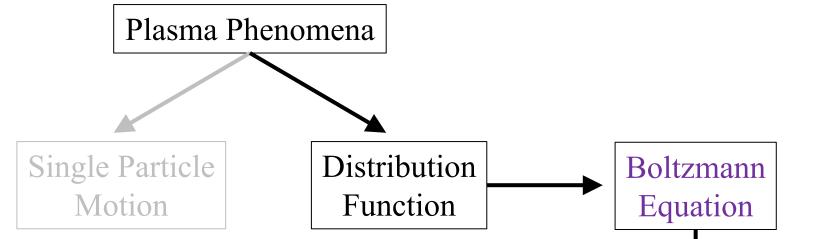
- Vlasov Equation:
- Boltzmann Equation:

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \left(\vec{E} + \vec{v} \times \vec{B}\right) \cdot \nabla_v f = 0$$
$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \left(\vec{E} + \vec{v} \times \vec{B}\right) \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_c$$

• Maxwell Equations: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_o \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_s}$ $\nabla \cdot \vec{B} = 0$

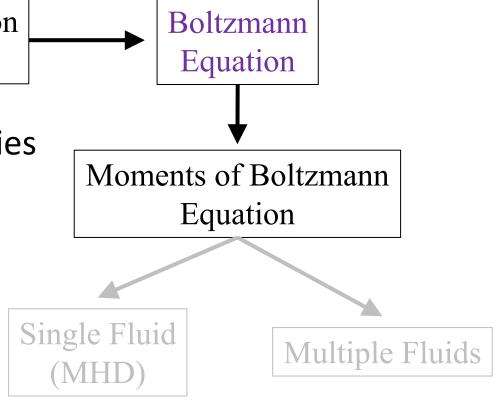
This is better but it is still computationally/analytically and intuitively really hard.

Hierarchy of Models



Model the plasma using average local quantities by integrating over velocity space

- density, n
- fluid velocity, v
- temperature, T
- pressure, p



Moment Approach

• Macroscopic (fluid) quantities in physical space are found by taking velocity moments of the distribution function

• Density:
$$n\left(\vec{x},t\right) = \int f\left(\vec{x},\vec{v},t\right) d\vec{v}$$

• Mean Flow:

Pressure:

 \bullet

$$\begin{split} n\vec{V}\left(\vec{x},t\right) &= \int \vec{v}f\left(\vec{x},\vec{v},t\right)d\vec{v} \\ \stackrel{\leftrightarrow}{P}\left(\vec{x},t\right) &= m\int \left(\vec{v}-\vec{V}\right)\left(\vec{v}-\vec{V}\right)f\left(\vec{x},\vec{v},t\right)d\vec{v} \end{split}$$

Moment Approach

• If we take moments of the Boltzmann Equation, we get the exact fluid equations.

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \left(\vec{E} + \vec{v} \times \vec{B}\right) \cdot \nabla_v f = \left(\frac{\partial f}{\partial t}\right)_c$$

• Example: 0^{th} moment (integrate over all of the velocities, $\int v^0 [] d\vec{v}$)

$$\int \frac{\partial f}{\partial t} d\vec{v} + \int \vec{v} \cdot \nabla f d\vec{v} + \int \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f d\vec{v} = \int \left(\frac{\partial f}{\partial t} \right)_c d\vec{v}$$

$$\frac{\partial n_s}{\partial t} + \nabla \cdot \left(n_s \vec{V}_s \right) = 0$$

Moment Approach

• Continuity Equation, $\int [] d\vec{v}$

$$\frac{\partial n_s}{\partial t} + \nabla \cdot \left(n_s \vec{V}_s \right) = 0$$

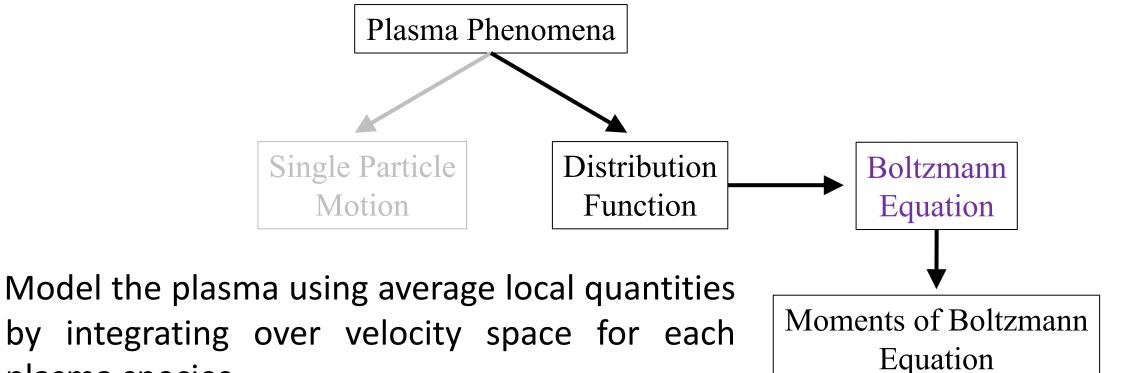
• Momentum Equation, $\int m \vec{v} \left[\ \right] d\vec{v}$

$$m_s n_s \left(\frac{\partial \vec{v}_s}{\partial t} + \vec{v}_s \cdot \nabla \vec{v}_s \right) + q_s n_s \left(\vec{E} + \vec{v}_s \times \vec{B} \right) - \nabla \cdot \stackrel{\leftrightarrow}{P}_s + \vec{R}_s$$

• Energy Equation,
$$\int \frac{m\vec{v}^2}{2} \left[\right] d\vec{v}$$

- Closure problem: for each moment, we introduce a new unknown
 - Need to make approximations to close the moment hierarchy

Hierarchy of Models



Single Fluid

(MHD)

Multiple Fluids

plasma species

- density, n_s
- fluid velocity, v_s
- temperature, $T_{\rm s}$
- pressure, p_s

Two-fluid Model

• Momentum Equation

$$m_s n_s \left(\frac{\partial \vec{v}_s}{\partial t} + \vec{v}_s \cdot \nabla \vec{v}_s\right) + q_s n_s \left(\vec{E} + \vec{v}_s \times \vec{B}\right) - \nabla \cdot \stackrel{\leftrightarrow}{P}_s + \vec{R}_s$$

• Continuity Equation,

$$\frac{\partial n_s}{\partial t} + \nabla \cdot \left(n_s \vec{V}_s \right) = 0$$

• Space charge and current

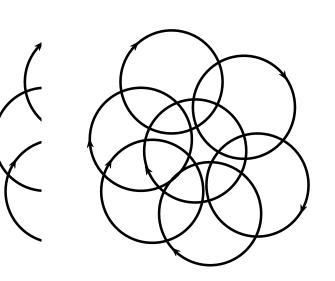
$$\rho = n_i e - n_e e$$
$$\vec{j} = n_i e \vec{u}_i - n_e e \vec{u}_e$$

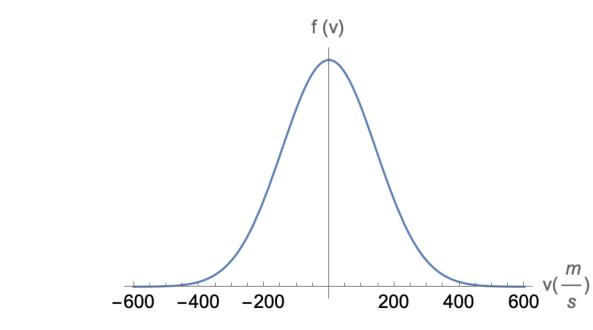
Maxell's Equations

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_o}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_o \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Fluid Approach – Is it reasonable?

- Particles to move together during the evolution of the plasma
 - High collisionality
 - Low temperature
 - Strong magnetic field





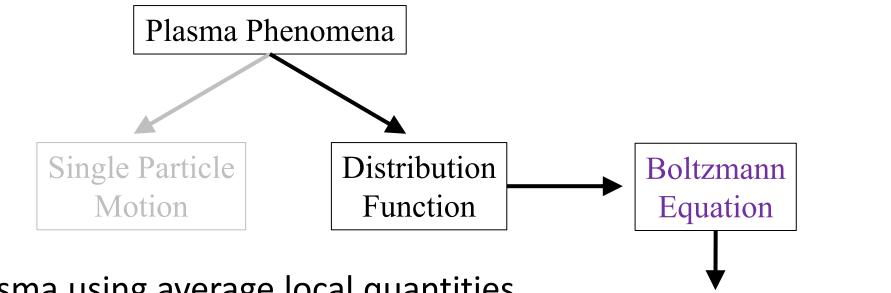
Strong magnetic field

8

Ø\$

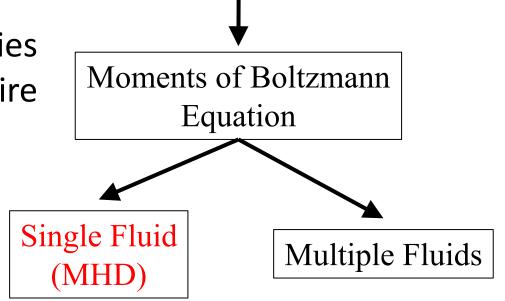
Weak magnetic field

Hierarchy of Models



Model the plasma using average local quantities by integrating over velocity space for the entire plasma

- density, n
- fluid velocity, v
- temperature, T
- pressure, p



- One fluid model of a plasma that treats the plasma as a nonrelativistic, highly collisional, electrically conductive fluid in an electromagnetic field
 - Highly collisional, so the the electron and ion temperatures have equilibrated and their particle distributions are Maxwellian
 - Gyroradius is small compared to any spatial scales of interest
 - Frequencies faster than the electron plasma frequency are ignored
 - Non-relativistic means we can ignore the displacement currents in Ampere's Law

- Assumptions:
 - the plasma is quasi-neutral, $n_e = n_i$
 - model the electron behavior by assuming that $m_e \rightarrow 0$
 - treat the plasma as a perfect conductor

- Key parameters
 - Mass density, ρ
 - Center of mass fluid velocity, \vec{u}
 - Current density, \vec{J}

- Species summed pressure, *p*
- Electric field, \vec{E}
- Magnetic field, \vec{B}

- Assumptions:
 - the plasma is quasi-neutral, $n_e = n_i$
 - model the electron behavior by assuming that $m_e \rightarrow 0$
 - treat the plasma as a perfect conductor
- Continuity Equation

$$\rho = \sum_{s} m_{s} n_{s}$$

$$\frac{\partial n_s}{\partial t} + \nabla \cdot \left(n_s \vec{V}_s \right) = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0$$

- Assumptions:
 - the plasma is quasi-neutral, $n_e = n_i$
 - model the electron behavior by assuming that $m_e
 ightarrow 0$
 - treat the plasma as a perfect conductor
- Add the Momentum Equation for ions and electrons

$$m_s n_s \left(\frac{\partial \vec{v}_s}{\partial t} + \vec{v}_s \cdot \nabla \vec{v}_s \right) + q_s n_s \left(\vec{E} + \vec{v}_s \times \vec{B} \right) - \nabla \cdot \stackrel{\leftrightarrow}{P}_s + \vec{R}_s$$

$$m_{i}n_{i}\left(\frac{\partial\vec{v}_{i}}{\partial t}+\vec{v}_{i}\cdot\nabla\vec{v}_{i}\right)+q_{i}n_{i}\left(\vec{E}+\vec{v}_{s}\times\vec{B}\right)-\nabla\cdot\stackrel{\leftrightarrow}{P}_{i}$$
$$q_{e}n_{e}\left(\vec{E}+\vec{v}_{e}\times\vec{B}\right)-\nabla\cdot\stackrel{\leftrightarrow}{P}_{e}$$

- the plasma is quasi-neutral, $n_e = n_i$
- model the electron behavior by assuming that $m_e
 ightarrow 0$
- Treat the plasma as a perfect conductor
- Add the Momentum Equation for ions and electrons

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla\right) \vec{v} = \vec{J} \times \vec{B} - \nabla \cdot \left(\overset{\leftrightarrow}{P}_i + \overset{\leftrightarrow}{P}_e\right)$$

$$\vec{J} = \sum_{s} q_{s} n_{s} \vec{v}_{s}$$

 $\rho = \sum_{s} m_s n_s = m_i n_i$

- Assumptions:
 - the plasma is quasi-neutral, $n_e = n_i$
 - model the electron behavior by assuming that $m_e
 ightarrow 0$
 - Treat the plasma as a perfect conductor
- From the Momentum Equation for electrons

$$m_s n_s \left(\frac{\partial \vec{v}_s}{\partial t} + \vec{v}_s \cdot \nabla \vec{v}_s\right) + q_s n_s \left(\vec{E} + \vec{v}_s \times \vec{B}\right) - \nabla \cdot \stackrel{\leftrightarrow}{P}_s + \vec{R}_s$$

$$\vec{E} + \vec{v} \times \vec{B} = 0$$

(Ideal) Magnetohydrodynamics- Governing Equations

• Continuity Equation

 $\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0$

Momentum Equation

$$\rho \frac{\partial \vec{V}}{\partial t} = \vec{J} \times \vec{B} - \nabla p$$

Energy Equation

$$\frac{d}{dt}\left(\frac{p}{\rho^{\frac{5}{3}}}\right) = 0$$

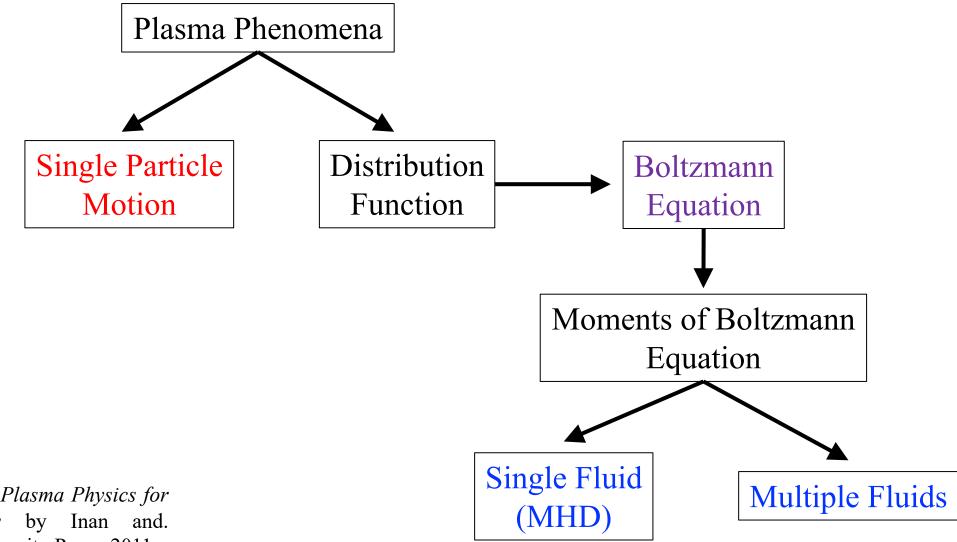
Ohm's Law

$$\vec{E}+\vec{V}\times\vec{B}=0$$

Maxwell's Equations

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_o \vec{J}$$

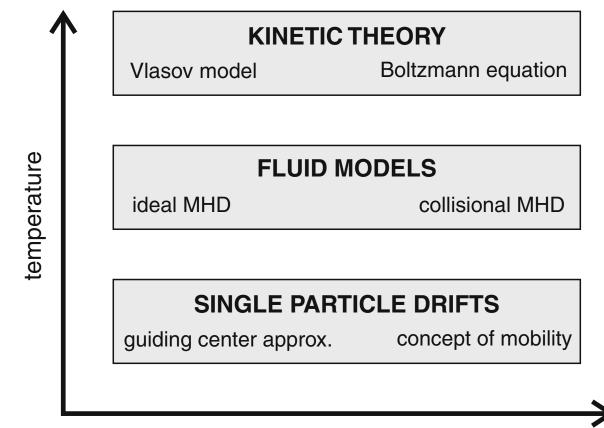
Key Takeaways



Adapted from *Principles of Plasma Physics for Engineers and Scientists* by Inan and. Gołkowski, Cambridge University Press, 2011.

Key Takeaways

• In general, each of these approaches are useful in the appropriate regime



collisionality

Key Takeaways

- Each method can provide valuable insight, allowing us to build intuition and to interpret result.
 - Insights can be amplified by using multiple models.

	Magnetohydrodynamics	<u>Two Fluids</u>	Gyrokinetics	<u>Kinetics</u>	<u>Everything</u>
Description	The plasma is one continuous fluid - ions have all the mass, but electron carry all the current.	Break the ions & electrons into two continuous, mingling fluids.	Only track superparticles' straight motion - and ignore the corkscrewing.	Assign particles a speed and location based on a distribution. Track super particles through space.	Track every particle, at all times.
Strengthens	Easily solved.	Simple bulk effects like drift waves & reconnection can be understood.	Captures most of kinetic model, but much easier to solve - can model an entire Tokamak.	Many things captured, can get powerful results like the linear velocity-space instabilities.	Most accurate model possible.
Weakness	Most things not captured: most plasma waves, leakage, kinetic instabilities, structures etc.	Many things not captured: plasma instabilities, large effects & non-equilibrium effects. Assumes bell curves.	Non-physical behavior over long times: resonances & adiabatic invariants can be lost.	Tough to solve: hard to apply to full size reactors. Loses some effects: like plasma microdensity and collective thomson scattering.	Typically impossible to solve.
Mathematics	Navier-stokes, Lorentz force, Maxwells' equations.	Navier-stokes, Lorentz force, Maxwells' equations.	Vlasov-Maxwell Expansion Equation	Vlasov-Maxwell Equation	Klimontovich Model
Plasma as a fluid (Chalkboard)				a das (Computer Required	

——Plasma as a fluid (Chalkboard) —

—Plasma as a gas (Computer Required) -

Simplicity

Thank you for your attention. Enjoy your summer project.

Questions? Comments?

E-mail: jwilliams@wittenberg.edu