
Introduction to Plasmas, Part II
How do we model the behavior of a plasma

Jeremiah Williams, Wittenberg University

E-mail: jwilliams@wittenberg.edu

SULI Introductory Course in Plasma Physics
14 June 2022

mailto:jwilliams@wittenberg.edu


A bit about me



• Physical systems whose
intrinsic properties are
governed by collective
interactions of large
ensembles of free charged
particles

• Spans a wide densities,
temperatures and spatial
scales

Recap: Plasmas – The first state of matter

Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics



• Plasma Density, ns

• Temperature, Ts

• Thermal Speed

• Debye Length

• Plasma Frequency

• Collision Frequency

• Cyclotron Frequency
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Recap: Plasmas - Characteristic quantities
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Figure 1: Moving the center of mass of the electrons with respect to the ions
creates a restoring force

this as an ideal parallel plate capacitor.
The electric field inside an ideal parallel plate capacitor is simply:
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pointing in the negative direction, where � is the surface charge density (charge
per unit area) of the plate, or slab in this case, Q is the total charge of the slab
and A is its area. Note that the electric field is uniform between the slabs and
it does not depend on their area, only on their thickness and number density.
The most common way of finding the electric field in a capacitor is done using
Gauss’ Law: r · ~E = ⇢/✏0, where, in our case, ⇢ = ene is the volume charge
density. We won’t go into detail here, but this is a very beautiful derivation
which uses the symmetry of the system.
Now, if we have an electron in the middle of the box feeling the electric field,
the force on this electron (which, as with all of the electrons in the slab, has
been shifted in the �x̂ direction), is:
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Where I have incorporated the direction of the shift in to the �x vector. But
Equation 7 is simply that of a harmonic oscillator with frequency:
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Today: How do we describe the behavior of a plasma

• The dynamics of a plasma is determined by the self-consistent
interaction between electromagnetic fields and a statistically large
number of particles.

• Conceptually, this is simple but in practice quite hard

Lorentz Equation
Use knowledge of ~E (~x, t) and ~B (~x, t) to find ~xj and ~vj for every particle

Maxwell Equations
Use knowledge of ~xj and ~vj for every particle to find ~E (~x, t) and ~B (~x, t)



Why is this so hard?

• Timescales

• Number of particles

Te = 3eV, Ti =
1

40
eV

τe ∼ 10−9
s, τi ∼ 10−6

s

τd ∼ 10−2
s

np ∼ 1015m−3, nd ∼ 1010m−3

V = 3× 10−3m3

N ∼ 109particles



Hierarchy of Models

Single particle motion (particle pushing)

Kinetic Theory (distribution functions)

Fluid Model (moments, conservation eq.)



Adapted from Principles of Plasma Physics for
Engineers and Scientists by Inan and.
Gołkowski, Cambridge University Press, 2011.
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Plasma Phenomena

Single Particle
Motion

Distribution
Function

Boltzmann
Equation

Moments of Boltzmann
Equation

Multiple FluidsSingle Fluid
(MHD)

Single particle motion

• Simplifying assumptions:
• Charged particles do not interact with

one another and their motions do not
constitute a large enough current to
significantly affect the EM fields.

• Motion is non-relativistic and collisions
can be ignored



Single particle motion

kBT =
1

2
mv2

th

vth ∼ 6× 105
m

s

ni ∼ 1020 ions

m3 , Ti = 108 K

• Consider an ion in fusion reactor

Ø ion would travel ~10 km before
colliding with another ion

Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics



Plasma Phenomena

Single Particle
Motion

Distribution
Function

Boltzmann
Equation

Moments of Boltzmann
Equation

Multiple FluidsSingle Fluid
(MHD)

Hierarchy of Models

• Newton’s 2nd Law

!Fnet = q
(

!E + !v × !B
)

= m!a



Single particle motion

• Consider a charged particle (proton) in a constant, uniform magnetic 
field

!Fnet = q
(

!E + !v × !B
)

= m!a

!B = Boẑ !E = 0

qvB = m v2

R
→ R =

mv
qB

y

x

(z out of screen)

e
+



Single particle motion

• Consider a charged particle in a constant, uniform magnetic field

!a =
d!v
dt

= !̇v =
q
m
!v × !B

!B = Bz ẑ !E = 0

Dot represents a time derivative



Single particle motion

• In component form

!̇v =
q

m
!v × !B

v̇x =
qvyBz

m
v̇y = −

qvxBz

m
v̇z = 0

Motion is constant 
in the z-directionMotion in the x- and 

y-direction is coupled
vz = constant



Single particle motion

• These can be decoupled by taking a time derivative

ωc ≡
|q|Bz

m

v̇x =
qvyBz

m
v̇y = −

qvxBz

m

d
dt
v̇x = v̈x =

qBz

m
v̇y = −

q2B2

z

m2 vx

v̈x = −

q2B2

z

m2 vx = −ω
2
cvx

v̈y = −ω
2
cvy



Single particle motion

• This can be solved (and we leave it to you to verify that it works)!

v̈y = −ω
2
cvyv̈x = −ω

2
c
vx

ωc ≡
|q|Bz

m

v⊥ =

√

v
2
x + v

2
y

vx = v⊥ cos (ωct+ φo) vy = ∓v⊥ sin (ωct+ φo)

arbitrary phase to match the 
initial velocity

accounts for a positive or 
negatively charged particle



Single particle motion

• Integrate with respect to time to find the position

x (t) = mv⊥

|q|Bo

sin (ωct+ φo) + xo

ωc ≡
|q|Bz

m

vx = v⊥ cos (ωct+ φo) vy = ∓v⊥ cos (ωct+ φo)

y (t) = ±
mv⊥

|q|Bo

cos (ωct+ φo) + yo

rL ≡
mv⊥

|q|Bo

rL



Single particle motion

• What if there is an electric field?

• In component form

!Fnet = q
(

!E + !v × !B
)

= m!a

!B = Bz ẑ
!E = Ez ẑ

v̇x = q

m
(vyBz) v̇y = −

qvxBz

m
v̇z =

qEz

m

constant acceleration in the 
z-direction

Same motion as before



Single particle motion

• What if there is an electric field?

!B = Bz ẑ
!E = Ez ẑ

time



Single particle motion

• What if there is an electric field?

!B = Bz ẑ
!E = Exx̂

y

x

(z out of screen)

e
+



Single particle motion

• What if there is an electric field?

• In component form

!Fnet = q
(

!E + !v × !B
)

= m!a

!B = Bz ẑ
!E = Exx̂

v̇x = q

m
(vyBz + Ex) v̇y = −

qvxBz

m
v̇z = 0



Single particle motion

• These can be decoupled by taking a time derivative

• Which we can solve

ωc ≡
|q|Bz

m

v̇y = −

qvxBz

m

v̈x = −

q2B2

z

m2 vx = −ω
2
cvx v̈y = −ω

2
c

(

vy −
Ex

Bz

)

v̇x = q

m
(vyBz + Ex)

vx = v⊥ cos (ωct+ φo) vy = ∓v⊥ sin (ωct+ φo)−
Ex

Bz

Guiding center moves at a 
constant speed in the –y direction



Single particle motion

• What if there is an electric field?

!B = Bz ẑ

y

x

(z out of screen)

e
+

!E = Exx̂



Single particle motion - Key takeaways

• Particle motion can be broken into two types of motion

• Gyration
• Particles orbit the applied magnetic field

• Radius of this orbit is the Larmor radius,

• Frequency of the orbit is the cyclotron frequency,

• Guiding center (what is left when you average over the gyration)

rL ≡
mv⊥

|q|Bo

ωc ≡
|q|Bo

m



Single particle motion

Chapter 5
Fluid Models

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—
And why the sea is boiling hot—
And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass

In the single-particle model (Chap. 3) the motion of the particles was derived from
fixed external electric and magnetic fields. This approach is very useful to obtain a
first insight into the richness of plasma motion, which results in a host of particle
drifts. The major drawback of this model is the neglect of the modification of the
fields by the electric currents represented by these drifts. The present chapter on
fluid models attempts to overcome this weakness.

The self-consistency of a plasma model is an important aspect. Only in such
models (Fig. 5.1) phenomena can be described where a magnetic field is apparently
frozen in the highly conductive plasma, such as in solar prominences. The Swedish
physicist and Nobel prize winner Hannes Alfvén (1908–1995) had recognized this
cooperative action of plasma and magnetic field and had predicted that a new type
of magnetohydrodynamic waves should exist, which are now named Alfvén waves.

Fig. 5.1 (a) A plasma model
with prescribed forces. (b) A
self-consistent plasma model

(b)(a)
Electric and

magnetic fields

Find trajectory
of particles

Find trajectories from
solving equations of motion F

ind space charge and
current from

 trajectories

Solve Maxwell's equations
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A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_5,
C© Springer-Verlag Berlin Heidelberg 2010
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1.1 Types of interacting systems 3

Fig. 1.1. A strongly coupled system.

If we consider the configuration in Fig. 1.1, we note that
within the domain there are few particles and the measure-
ment obtained by our fantastic electric field meter would be
very jumpy. The particles in the box move constantly, in-
teracting with each other and agitated by their thermal mo-
tion. As a particle passes by the detector, the measurement
detects a jump up and when a particle moves away it de-
tects a jump down. On average at any given time very few
particles are near the detector and their specific positions
are key in determining the value measured. The effect of a
given particle on the electric field at the location of measure-
ment decays very rapidly with the distance and only when
the particle is nearby the effect is strong.

The same effect is detected by each of the particles in the
system. The electric field each particle feels is a the sum of
the contributions of all others but only when another par-
ticle passes by the electric field would register a jump: in
common term this event is called a collision. The particle

Cartoon figures by G. Lapenta in “Particle In Cell Methods With Application to Simulations in Space Weather”

• Can we extend this?
• Charged particles do not interact with one another and their

motions do not constitute a large enough current to significantly
affect the EM fields.

• Charged particles do not interact with one another and their
motions do not constitute a large enough current to significantly
affect the EM fields.



Single particle motion:

• But. . .
• There are many particles that are interacting
• The interaction depends on the position and velocity of all of the 

other particles.

Fp = qp
∑N

j=1

1

4πεo

qj
|#ri−#rj |2 1.1 Types of interacting systems 3

Fig. 1.1. A strongly coupled system.

If we consider the configuration in Fig. 1.1, we note that
within the domain there are few particles and the measure-
ment obtained by our fantastic electric field meter would be
very jumpy. The particles in the box move constantly, in-
teracting with each other and agitated by their thermal mo-
tion. As a particle passes by the detector, the measurement
detects a jump up and when a particle moves away it de-
tects a jump down. On average at any given time very few
particles are near the detector and their specific positions
are key in determining the value measured. The effect of a
given particle on the electric field at the location of measure-
ment decays very rapidly with the distance and only when
the particle is nearby the effect is strong.

The same effect is detected by each of the particles in the
system. The electric field each particle feels is a the sum of
the contributions of all others but only when another par-
ticle passes by the electric field would register a jump: in
common term this event is called a collision. The particle

Cartoon figures by G. Lapenta in “Particle In Cell Methods With Application to Simulations in Space Weather”



Single particle motion λD =

√

εoT
q2n

ni ∼ 1020 ions

m3 , Ti = 108 K, V = 840m3

• Is there another way?

N ∼ 1023ions

N3λD
∼ 108

λD ∼ 70× 10−6m

• Is there any hope?

Image from L. Matthews 2021 SULI Talk, Introduction to Plasma Physics



Kinetic Description

• There is a large  number of particles in a volume of size lD3

• Replace the discrete particles with a (smooth) distribution function,

1.1 Types of interacting systems 3

Fig. 1.1. A strongly coupled system.

If we consider the configuration in Fig. 1.1, we note that
within the domain there are few particles and the measure-
ment obtained by our fantastic electric field meter would be
very jumpy. The particles in the box move constantly, in-
teracting with each other and agitated by their thermal mo-
tion. As a particle passes by the detector, the measurement
detects a jump up and when a particle moves away it de-
tects a jump down. On average at any given time very few
particles are near the detector and their specific positions
are key in determining the value measured. The effect of a
given particle on the electric field at the location of measure-
ment decays very rapidly with the distance and only when
the particle is nearby the effect is strong.

The same effect is detected by each of the particles in the
system. The electric field each particle feels is a the sum of
the contributions of all others but only when another par-
ticle passes by the electric field would register a jump: in
common term this event is called a collision. The particle

4 Physical Derivation of the PIC method

trajectories would then be affected by a series of close en-
counters registered as jumps in the trajectory.

The system described goes in the language of kinetic the-
ory as a strongly coupled system, a system where the evolu-
tion is determined by the close encounters and by the rela-
tive configuration of any two pairs of particles. The condition
just described is characterised by the presence of few parti-
cles in the box: ND = nλ3

D is small.
The opposite situation is that of a weakly coupled system.

The corresponding configuration is described in Fig. 1.2.

Fig. 1.2. A weakly coupled system.

Now the system is characterised by being composed by an
extremely large number of particles. In any given point, the
number of particles contributing to the electric field is very
large. Regardless of the particle motion, the field is given by
the superposition of many contributions. As a consequence,
by simple averaging of the effects of all the particles con-
tributing to the measurement, the measurement is smooth
and does not jump in time. Similarly the trajectory of a par-
ticle is at any time affected by a large number of other par-

Cartoon figures by G. Lapenta in “Particle In Cell Methods With Application to Simulations in Space Weather”

f (!x,!v, t)
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• Each species is represented by a
distribution function, , in a 6D
phase space

• Interested in the evolution of the
distribution function.

f (!x,!v, t)



Kinetic Description
• Each species is represented by a distribution function, , in

a 6D phase space
f (!x,!v, t)

f (!x,!v, t) d!xd!v = # of particles in a 6D phase-space volume d!xd!v

• Interested in the evolution
of the distribution function.

Cartoon figures by G. Colonna in “Plasma Modeling: Methods and Applications”



Kinetic Description

• If we track the distribution function along the trajectories that the
particles follow in phase space, the distribution function is
conserved.

0 = d
dt

(f (!x,!v, t)) = ∂f
∂t

+ d"x
dt

·∇f + d"v
dt

·∇vf

!v =
d!x

dt
!a =

d!v
dt

=
q
m

(

!E + !v × !B

)

∂f
∂t

+ !v ·∇f +

(

!E + !v × !B
)

·∇vf =

(

∂f
∂t

)

c

∂f
∂t

+ !v ·∇f +

(

!E + !v × !B
)

·∇vf = 0



Kinetic Description

• Vlasov Equation:

• Boltzmann Equation:

• Maxwell Equations:

Ø This is better but it is still computationally/analytically and
intuitively really hard.

∂f
∂t

+ !v ·∇f +

(

!E + !v × !B
)

·∇vf =

(

∂f
∂t

)

c

∂f
∂t

+ !v ·∇f +

(

!E + !v × !B
)

·∇vf = 0

∇× !E = −
∂ "B

∂t
∇× !B = µo

!J +
1

c2
∂ "E

∂t

∇ · !E =
ρ

εo ∇ · !B = 0
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Hierarchy of Models

Model the plasma using average local quantities
by integrating over velocity space
• density, n
• fluid velocity, v
• temperature, T
• pressure, p



Moment Approach

• Macroscopic (fluid) quantities in physical space are found by taking 
velocity moments of the distribution function

• Density:

• Mean Flow:

• Pressure:

n (!x, t) =
∫
f (!x,!v, t) d!v

n!V (!x, t) =
∫
!vf (!x,!v, t) d!v

↔

P (!x, t) = m
∫

(

!v − !V
)(

!v − !V
)

f (!x,!v, t) d!v



Moment Approach

• If we take moments of the Boltzmann Equation, we get the exact
fluid equations.

• Example: 0th moment (integrate over all of the velocities, )

∂f
∂t

+ !v ·∇f +

(

!E + !v × !B
)

·∇vf =

(

∂f
∂t

)

c

∫

∂f
∂t
d!v +

∫

!v ·∇fd!v +
∫

(

!E + !v × !B
)

·∇vfd!v =
∫

(

∂f
∂t

)

c
d!v

∂ns

∂t
+ ∇ ·

(

ns
!Vs

)

= 0

∫
v0 [ ] d!v



Moment Approach

• Continuity Equation, 

• Momentum Equation, 

• Energy Equation,

Ø Closure problem: for each moment, we introduce a new unknown
• Need to make approximations to close the moment hierarchy 

∂ns

∂t
+∇ ·

(

ns
!Vs

)

= 0

∫
[ ] d!v

∫
m!v [ ] d!v

∫
m!v

2

2
[ ] d!v

msns

(

∂"vs
∂t

+ !vs ·∇!vs
)

+ qsns

(

!E + !vs × !B
)

−∇·
↔

P s +
!Rs



Plasma Phenomena

Single Particle
Motion

Distribution
Function

Boltzmann
Equation

Moments of Boltzmann
Equation

Multiple FluidsSingle Fluid
(MHD)

Hierarchy of Models

Model the plasma using average local quantities
by integrating over velocity space for each
plasma species
• density, ns
• fluid velocity, vs
• temperature, Ts
• pressure, ps



Two-fluid Model

• Momentum Equation 

• Continuity Equation, 

• Space charge and current

• Maxell’s Equations

∂ns

∂t
+∇ ·

(

ns
!Vs

)

= 0

msns

(

∂"vs
∂t

+ !vs ·∇!vs
)

+ qsns

(

!E + !vs × !B
)

−∇·
↔

P s +
!Rs

ρ = nie− nee

"j = nie"ui − nee"ue

∇ · !E =
ρ

εo

∇ · !B = 0

∇× !E = −
∂ !B

∂t

∇× !B = µo
!J +

1

c2
∂ !E

∂t



Fluid Approach – Is it reasonable?

• Particles to move together during the evolution of the plasma
• High collisionality
• Low temperature
• Strong magnetic field

STRONG MAGNETIC FIELD

Weak magnetic field Strong magnetic field

I At high magnetic field, short mean free path perpendicular to
the magnetic field

I Projections of nearby particles in plane ? to magnetic field
remain nearby during the entire evolution

I Fluid-like behavior perpendicular to the magnetic field

STRONG MAGNETIC FIELD

Weak magnetic field Strong magnetic field

I At high magnetic field, short mean free path perpendicular to
the magnetic field

I Projections of nearby particles in plane ? to magnetic field
remain nearby during the entire evolution

I Fluid-like behavior perpendicular to the magnetic field



Plasma Phenomena

Single Particle
Motion

Distribution
Function

Boltzmann
Equation

Moments of Boltzmann
Equation

Multiple FluidsSingle Fluid
(MHD)

Hierarchy of Models

Model the plasma using average local quantities
by integrating over velocity space for the entire
plasma
• density, n
• fluid velocity, v
• temperature, T
• pressure, p



• One fluid model of a plasma that treats the plasma as a
nonrelativistic, highly collisional, electrically conductive fluid in an
electromagnetic field
• Highly collisional, so the the electron and ion temperatures have

equilibrated and their particle distributions are Maxwellian
• Gyroradius is small compared to any spatial scales of interest
• Frequencies faster than the electron plasma frequency are

ignored
• Non-relativistic means we can ignore the displacement currents

in Ampere’s Law

(Ideal) Magnetohydrodynamics



• Assumptions:
• the plasma is quasi-neutral,
• model the electron behavior by assuming that
• treat the plasma as a perfect conductor

• Key parameters

(Ideal) Magnetohydrodynamics

• Mass density, r
• Center of mass fluid

velocity,

• Current density,

• Species summed pressure, p

• Electric field,

• Magnetic field,!u

!J

ne = ni

me → 0

!E

!B



• Assumptions:
• the plasma is quasi-neutral,
• model the electron behavior by assuming that
• treat the plasma as a perfect conductor .

• Continuity Equation

(Ideal) Magnetohydrodynamics

ne = ni

me → 0

ρ =

∑
s
msns = mini

∂ns

∂t
+∇ ·

(

ns
!Vs

)

= 0
∂ρ
∂t +∇ ·

(

ρ"V
)

= 0



• Assumptions:
• the plasma is quasi-neutral,
• model the electron behavior by assuming that
• treat the plasma as a perfect conductor .

• Add the Momentum Equation for ions and electrons

(Ideal) Magnetohydrodynamics

ne = ni

me → 0

mini

(

∂"vi
∂t

+ !vi ·∇!vi
)

+ qini

(

!E + !vs × !B
)

−∇·
↔

P i

msns

(

∂"vs
∂t

+ !vs ·∇!vs
)

+ qsns

(

!E + !vs × !B
)

−∇·
↔

P s +
!Rs

qene

(

!E + !ve × !B
)

−∇·
↔

P e



• Assumptions:
• the plasma is quasi-neutral,
• model the electron behavior by assuming that
• Treat the plasma as a perfect conductor .

• Add the Momentum Equation for ions and electrons

(Ideal) Magnetohydrodynamics

ne = ni

me → 0

ρ
(

∂"v

∂t
+ "v ·∇

)

"v = "J × "B −∇ ·

(

↔

P i +
↔

P e

)

!J =

∑
s
qsns!vs

ρ =

∑
s
msns = mini



• Assumptions:
• the plasma is quasi-neutral,
• model the electron behavior by assuming that
• Treat the plasma as a perfect conductor .

• From the Momentum Equation for electrons

(Ideal) Magnetohydrodynamics

ne = ni

me → 0

msns

(

∂"vs
∂t

+ !vs ·∇!vs
)

+ qsns

(

!E + !vs × !B
)

−∇·
↔

P s +
!Rs

!E + !v × !B = 0



(Ideal) Magnetohydrodynamics- Governing Equations

• Continuity Equation

• Momentum Equation

• Energy Equation

• Ohm’s Law

• Maxwell’s Equations

∂ρ
∂t +∇ ·

(

ρ"V
)

= 0

ρ∂"V

∂t
=

"J × "B −∇p

d
dt

(

p

ρ
5
3

)

= 0

!E + !V × !B = 0

∇ · !B = 0

∇× !E = −
∂ !B

∂t

∇× !B = µo
!J



Adapted from Principles of Plasma Physics for
Engineers and Scientists by Inan and.
Gołkowski, Cambridge University Press, 2011.
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Key Takeaways

• In general, each of these approaches are useful in the appropriate
regime220 9 Kinetic Description of Plasmas

Fig. 9.1 The hierarchy
of plasma models
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of a dielectric with any of the three levels of plasma description. In particular, we
will see in kinetic theory, what the concepts of cold plasma and warm plasma really
mean.

9.1 The Vlasov Model

A complete description of a plasma must on the one hand include fluid aspects
and self-consistent fields, and on the other hand the velocity distributions of the
particle species. Such a concept is developed in kinetic theory. In this Section, we
will abandon the true particle positions, but use the probability distribution in real
space and in velocity space. For collisionless plasmas this can be done in terms of
the Vlasov model that was introduced, in 1938, by Anatoly Vlasov (1908–1975).

9.1.1 Heuristic Derivation of the Vlasov Equation

In the fluid model we became acquainted with the concept of replacing particle
trajectories by a statistical description of the mean properties of the plasma particles
within small fluid elements. There, we had defined the mass density ρm(r, t) and
the flow velocity u(r, t), which are connected by the conservation of mass

∂

∂t
ρm(r, t) + ∇ · [ρm(r, t)u(r, t)] = 0 . (9.1)

In kinetic theory, it is no longer sufficient to consider a mean flow velocity, but
the evolution of the number of particles in a certain velocity interval d3v about
a velocity vector v has to be explicitely described. The mass #m inside a small
volume ∆x∆y∆z of real space was defined by

#m = ρm(r, t)#x#y#z . (9.2)



Key Takeaways

• Each method can provide valuable insight, allowing us to build
intuition and to interpret result.
• Insights can be amplified by using multiple models.



Thank you for your attention. 
Enjoy your summer project.

Questions? Comments?

E-mail: jwilliams@wittenberg.edu

mailto:jwilliams@wittenberg.edu

