Laser wakefield acceleration and applications to light sources

Félicie Albert Lawrence Livermore National Laboratory

2022 Introduction to Fusion Energy and Plasma Physics Course

Friday, June 24th 2022

LLNL-PRES-706577
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

How did I get here?

 As a kid, I loved astronomy and skiing, and wanted to be astronaut or orthopedic surgeon

Then

- Chose physics in undergraduate
- 2002: Exchange program with University of Central Florida
- 2004 2007: PhD in France
- 2008: My UCF professor offered me a postdoc position at LLNL!
- 2008 Now: I was supposed to stay at LLNL 2 years and then go back, I am still here, so you guessed I kind of like working with lasers and plasmas (and surfing!)

Outline

- Conventional light sources: Synchrotrons and X-ray Free Electron Lasers
- Laser Plasma Acceleration
- High Intensity Lasers
- Light sources driven by laser plasma acceleration
 - Betatron
 - Compton scattering
 - Bremsstrahlung
 - X-ray free electron laser
 - Terahertz
- How wan we use these sources?

Preliminary definitions and notations

- Electron volt: energy gained by one electron in a 1 Volt potential
 - 1 eV = 1.6 x 10⁻¹⁹ J
- Electron relativistic factor and normalized velocity

•
$$\gamma = \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}}$$
 and $\beta = \frac{v}{c}$

- $\gamma = 1$ electron at rest, 0.511 MeV
- $\gamma = 1000$ electron at ~ 500 MeV and $\beta = 0.9999995$
- Unless otherwise specified, using MKS units
 - Speed of light $c=299792458 \text{ m.s}^{-1}$
 - Free space permittivity $\epsilon_0 = 8.85418782 \times 10^{-12}$ F.m⁻¹
 - Free space permeability $\mu_0 = 4\pi 10^{-7} \text{ H.m}^{-1}$

The electromagnetic spectrum

Wavelength (meters)

Conventional x-ray light sources are large scale national facilities

X-ray free electron laser: LCLS

Synchrotron: APS

How do we produce x-rays with large particle accelerators?

A particle changing direction emits radiation along its path

How do we produce x-rays with large particle accelerators?

A particle changing direction emits radiation along its path

In synchrotrons and XFELs Magnets are used to change the particle's path

Relativity detour

• An electron oscillating with period λ_{β} emits at a wavelength $\lambda_{\beta}/2\gamma^2$

These light sources have enabled seminal discoveries

Liu Science 2013

Atomic x-ray laser

Rohringer Nature 2012

http://www.diamond .ac.uk/industry/ Semiconductor research

Margaritondo, J. Phys. IV 2006

Solar plasmas

Vinko Nature 2012

Outline

- Conventional light sources: Synchrotrons and X-ray Free Electron Lasers
- Laser Plasma Acceleration
- High Intensity Lasers
- Light sources driven by laser plasma acceleration
 - Betatron
 - Compton scattering
 - Bremsstrahlung
 - X-ray free electron laser
 - Terahertz
- How wan we use these sources?

Sources driven by laser-plasma accelerators offer an alternative

Synchrotron

Electrons from storage ring wiggled by undulators

Free Electron Laser

Electrons from linac wiggled by undulators

Laser-plasma

Electrons from laser-produced plasma wiggled by plasma

Plasmas can naturally sustain large acceleration gradients

Gas cell – laser plasma

Plasma definitions

- Intense laser beams have sufficient intensity to form fully ionized plasmas of helium or hydrogen
- An electromagnetic wave with frequency ω_0 and wavenumber k will propagate in a plasma if the electron density n_e of the plasma is less than the critical density n_c such that $\omega_0 = \sqrt{\frac{n_c e^2}{m\epsilon_0}}$

Then the pulse propagates and obeys the dispersion relation $\omega_0^2 = \omega_p^2 + k^2 c^2$

- $\omega_p = \sqrt{\frac{n_e e^2}{m\epsilon_0}}$ is the electron plasma frequency (ie natural oscillations of electrons in plasma)
 - $\lambda_p = 2\pi c/\omega_p$ is the plasma period
- $\omega_{pi} = \sqrt{Z \frac{m}{m_i} \omega_p}$ is the ion plasma frequency (ie natural oscillations of ions in plasma)

$\frac{\text{Example:}}{\text{For }n_e = 10^{19} \text{ cm}^{-3} \text{ , } \omega_p = 1.78 \times 10^{14} \text{ s}^{-1} \text{ and } \lambda_p = 10.5 \text{ }\mu\text{m}}$ For a fully ionized helium plasma $\omega_{pi} \sim 0.03 \text{ }\omega_p$

Plasmas can naturally sustain large acceleration gradients

Gas cell – laser plasma

Acceleration gradient

$$\omega_p = \sqrt{\frac{n_e e^2}{m\varepsilon_0}}$$

Plasma frequency

$$n_e = 10^{18} \text{ cm}^{-3} \rightarrow E_0 = 96 \text{ GV/m}$$

Most of the time we will consider the ions to be immobile

Electron plasma wave

Wake behind a boat

Plasma wave behind a laser

OSIRIS PIC simulation Nuno Lemos, LLNL

Electron plasma wave

Wake behind a boat

Plasma wave behind a laser

OSIRIS PIC simulation Nuno Lemos, LLNL

Electron plasma wave

Wake behind a boat

Plasma wave behind a laser

OSIRIS PIC simulation Nuno Lemos, LLNL

A brief history of laser wakefield acceleration

1979: Tajima and Dawson propose using laser-driven plasma waves to accelerate electrons

VOLUME 43, NUMBER 4

PHYSICAL REVIEW LETTERS

23 July 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

A brief history of laser wakefield acceleration

1979: Tajima and Dawson propose using laser-driven plasma waves to accelerate electrons
1980's: Experimental production and measurement of relativistic plasma waves (UCLA)
1985: Invention of chirped pulse amplification (CPA) enabling ultrashort high peak power laser pulses (LLE)

1995: Acceleration of electrons in the self-modulated regime out to 40 MeV (UCLA/RAL)
2002: Acceleration of electrons in the nonlinear regime with ultrashort pulses out to 200 MeV (LOA)
2004: Three groups independently demonstrate the acceleration of monoenergetic electron beams (~100 MeV) with ultrashort pulses. Nature cover, the "dream beam" (LBNL, Imperial College, LOA)
2006: 1 GeV barrier is broken (LBNL), controlled injection demonstrated (LOA, France)
2007: Theory of blowout regime of laser wakefield acceleration (UCLA)
2014: Acceleration of electrons with PW laser pulses, 4.2 GeV (LBNL)
2018: More than 20 groups worldwide are working on LWFA and applications with dedicated facilities and user facilities (eg. ELI)

2022: Several groups now working on using these sources for applications

Outline

- Conventional light sources: Synchrotrons and X-ray Free Electron Lasers
- Laser Plasma Acceleration
- High Intensity Lasers
- Light sources driven by laser plasma acceleration
 - Betatron
 - Compton scattering
 - Bremsstrahlung
 - X-ray free electron laser
 - Terahertz
- How wan we use these sources?

Intense laser pulses were made possible by Chirped Pulse Amplification (CPA) in 1985

Donna Strickland is the first woman to have been awarded the Nobel Prize in Physics for CPA in 55 years

"For methods of generating high intensity ultrashort laser pulses" Marie Curie 1903

Maria Goeppert Mayer 1963

"for joint researches on the radiation phenomena discovered by Professor Henri Becquerel"

> "for discoveries concerning nuclear shell structure"

High Intensity lasers around the world

Lawrence Livermore National Laboratory

25

In 2018 the DOE – FES established LaserNetUS to allow scientists access to these high intensity lasers

- **10** high power laser facilities*
- Includes the 6 most powerful lasers housed at Universities
- Highest powers exceed **1 petawatt**
- Dedicated to the proposition that **ALL** research groups should have access to the brightest light
- *UCF not yet offering beam time

Outline

- Conventional light sources: Synchrotrons and X-ray Free Electron Lasers
- Laser Plasma Acceleration
- High Intensity Lasers
- Light sources driven by laser plasma acceleration
 - Betatron
 - Compton scattering
 - Bremsstrahlung
 - X-ray free electron laser
 - Terahertz
- How wan we use these sources?

Electrons from laser plasma accelerators can emit radiation

Sources driven by LPA span the entire spectrum of radiation

Wavelength (meters)

Electrons from laser plasma accelerators can emit radiation

Single electron model of betatron oscillations

- If the electron is injected off axis, the transverse restoring force can be calculated with Gauss Law $\mathbf{F} = -m_e \omega_p \frac{r}{2}$
- The equation of motion for the electron is $\frac{dp}{dt} = -m_e \omega_p \frac{r}{2} eE_z$
- Neglecting acceleration, the equation is that of an harmonic oscillator: $\frac{d^2x}{d^2t} = -\frac{\omega_p^2}{2\gamma}x$
- $x = r_0 \sin(\omega_\beta t)$ and $\beta_x = \frac{v_x}{c} = k_\beta r_0 \cos(\omega_\beta t)$
- Betatron freq. $\omega_{\beta} = \frac{\omega_p}{\sqrt{2\gamma}} = k_{\beta}c = 2\pi c/\lambda_{\beta}$

Example: $n_e = 1 \times 10^{19} \text{ cm}^{-3}$ and $\gamma = 200 \text{ means } \lambda_\beta = 212 \text{ }\mu m$

How does the betatron source compare to a synchrotron?

How does the betatron source compare to a synchrotron?

In synchrotrons Magnets are used to change the particle's path

How does the betatron source compare to a synchrotron?

In synchrotrons Magnets are used to change the particle's path

There are no magnets in a plasma but the electron will use the wave to wiggle

Another Relativity detour

• An electron oscillating with period λ_{β} emits at a wavelength $\lambda_{\beta}/2\gamma^2$

Betatron wiggler strength K

- If we approximate z~ct (electrons near speed of light) then x = r₀ sin(k_βz)
- The angular excursion of the particle with respect to the propagation axis is $\theta = \left(\frac{dx}{dz}\right)_{z=0} = k_{\beta}r_0$
- We define the wiggler strength $K = \gamma \theta = \gamma k_{\beta} r_0$
- Practical units $K = 1.33 \times 10^{-10} \sqrt{\gamma n_e [cm^{-3}]} r_0 [\mu m]$
- Undulator regime *K* < 1
- Wiggler regime K >> 1

Example: $n_e = 1 \times 10^{19} \text{ cm}^{-3}$, $\gamma = 200$ and $r_0 = 3 \mu m$ means K = 18Most of the time we are in the wiggler regime

- *z~ct* is only an approximation
- We need to take into account the longitudinal and transverse components of the electron velocity such that

$$\gamma = \sqrt{\frac{1}{1-\beta^2}} = \sqrt{\frac{1}{1-\beta_z^2 - \beta_x^2}}$$

Coupling between transverse and longitudinal components
 -> position and velocity have harmonics

$$\beta_z \simeq 1 - \frac{1}{2\gamma^2} - \frac{k_\beta^2 r_0^2}{4} - \frac{k_\beta^2 r_0^2}{4} \cos(2k_\beta ct),$$
$$z \simeq (1 - \frac{1}{2\gamma^2} - \frac{k_\beta^2 r_0^2}{4})ct - \frac{k_\beta^2 r_0^2}{8}\sin(2k_\beta ct).$$

• Emission will contain harmonics of fundamental radiation and $\omega_n = \frac{2\gamma^2 n \omega_\beta}{1+K^2/2}$

Lawrence Livermore National Laboratory

E Esarey, Phys. Rev. E (2002); K. Ta Phuoc, Physics of Plasmas (2005)

A typical betatron radiation experiment

Betatron x-ray source properties

Electrons from laser plasma accelerators can emit radiation

Lawrence Livermore National Laboratory

Compton scattering relies on energy-momentum conservation

For head on collision (ϕ =180 degrees) and on axis (θ =0 degrees)

 $2\gamma k \lambda_c$ Photon energy $E_x \sim 4\gamma^2 E_L$

Example: $\gamma = 200$ and $E_L = 1 \ eV$ means $E_X = 160 \ keV$

You get higher energies than with betatron radiation!

The colliding laser is provided by a plasma mirror or a second beam

Lawrence Livermore National Laboratory

¹K. Ta Phuoc et al, Nature Photonics (2012), H.E. Tsai et al, Phys. Plasmas (2015). ²H. Schwoerer et al, Phys. Rev. Lett (2006), N.D. Powers et al, Nature Photonics (2014), K. Khrenikov et al, Phys. Rev. Lett (2015)

Electrons from laser plasma accelerators can emit radiation

Bremsstrahlung is produced when electrons from the LPA are bombarded into a high Z solid foil

Outline

- Conventional light sources: Synchrotrons and X-ray Free Electron Lasers
- Laser Plasma Acceleration
- High Intensity Lasers
- Light sources driven by laser plasma acceleration
 - Betatron
 - Compton scattering
 - Bremsstrahlung
 - X-ray free electron laser
 - Terahertz
- How wan we use these sources?

Medical x-ray imaging requires excellent spatial resolution, fast acquisition and low dose delivered to the patient

Additive manufacturing (AM) requires non-invasive, in-situ diagnostic methods with extreme precision that x-ray imaging can offer

AM builds parts by adding material as opposed to standard machining techniques

Production issues can occur

- Incorrect processing parameters or build conditions
- Surface roughness or imperfections
- Deformation caused by stress
- Anisotropic mechanical properties

Small source size enables x-ray phase contrast imaging

Chrysoperia carnea Wenz et al, Nat. Comm (2015)

Trabecular hip bone sample Cole et al, *Sc. Rep* (2015)

Laser-driven shock J. Wood et al, *Sc. Rep* (2018)

Radiography of materials and compounds for industrial and national security applications

Complex objects (Bremsstrahlung)

Surface defects in alloys (Betatron)

Concealed threats

(Compton scattering)

At LLNL we use the largest, most energetic laser on earth to concentrate its 192 beams into a mm3

Such experiments create extreme, transient conditions of temperature and pressure that are hard to diagnose

100 million degrees 20x the density of lead

X-ray sources with MeV photons and <10 μm resolution are required to understand some of the experiments done at the NIF

Spectral and flux tuning allows for optimized radiography applications

Lawrence Livermore National Laboratory N. Lemos et. al, In preparation

LLNL-PRES-706577

X-ray absorption spectroscopy

Laser in at Time 0 (T_0)

Laser in at Time 0 (T_0)

Laser in at Time O (T_0)

What we've learned today

Cole et al, Scientific Reports (2015)

