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Overview

= Non-thermal plasma and its active components
= Whatis cancer?
= How does plasma oncology work?

= Plasma-liquid interactions in the presence of cells
= Plasma for Life Sciences — Research Overview
= Qutlook
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Plasma — a cocktail of active ingredients
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Key Roles of Reactive Oxygen and Nitrogen Species

= Plasma (in air) produces the same molecules that our body uses for signaling

= RONS generally react by exchanging electrons in a chemical process called

redox reactions (reduction-oxidation)

Looking at life from the perspective of electron flow may be one of the most universal and
fundamental approaches to Biology. This is because all known life forms depend on elec-
trons that get stranded at the top of ‘energy hills,” waiting to roll down the hill toward a
low-energy resting place. This insight has been famously expressed in the words of Albert
Szent-Gyorgyi: “Life is nothing but electrons looking for a place to rest” [2].

Comprehensive Clinical Plasma Medicine, Springer 2018
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RONS & Redox
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Redox Biology — NO and O,

= NO and O, together with other RONS have short lifetimes. If or N2s
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= NO and O, are created in biological systems and by plasma!

Comprehensive Clinical Plasma Medicine, Springer 2018
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Redox Biology

= RONS-based therapies & plasma cause similar effect as an innate immune

system oxidative burst

= Plasma (at low doses) mimics an immune response to tissue damage,

wounds or infection which could initiate a natural healing response

= Plasma & Immune Response — Immunotherapy for Cancer Treatment?

Comprehensive Clinical Plasma Medicine, Springer 2018
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Cancer — what is it exactly?

= malignant growth resulting from the division of abnormal cells
= Cancer is caused by changes in the DNA

= A DNA change can cause genes involved in normal cell growth to
become oncogenes

= Unlike normal genes, oncogenes cannot be turned off:
uncontrolled cell growth

= Tumor suppressor genes prevent cancer in normal cells by stopping
cell growth.

= DNA changes that inactivate tumor suppressor genes can lead to
uncontrolled cell growth.

Tumor
SUpprossor

normal cells

DNA changes
that inactivate
tumor
SUPPressor
goneos can lead
to uncontrolied
cell growth

www.cancer.gov
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Cancer — Immune Escape

= Immune Escape: | ATTACK | (EVADE

= Cancer cells can be detected and attacked by immun Col
the immune system OB Cal

= Some cancer cells can avoid detection or thwart
an attack

= Immune therapy / plasma can help the immune
system to detect and kill cancer cells

www.cancer.gov



SE ROLE OF IMMUNE SYSTEM IN CANCER
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S ROLE OF IMMUNE SYSTEM IN CANCER
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S TREATMENT OF CANCER

Drexel
MEDICINE

« Goal: get rid of cancer cells - immune benefit incidental
* Surgery
% Chemotherapy
% Radiation Therapy
% Photodynamic Therapy
* |Immunotherapy: targeted delivery of immune “attack”
% Engineered immune cells (CAR T cells)
% Overcoming immune inhibition (immune checkpoint blockage)

* IMMUNOGENIC CELL DEATH (ICD) induction

INSTITUTE FOR MOLECULAR MEDICINE AND INFECTIOUS DISEASE



& ADVANTAGES OF IMMUNOTHERAPY

Drexel
MEDICINE

* Durable - immune cells remember tumor cells and prevent

recurrence. Cure?
« Targeted - little to no damage to normal tissue
« Adaptable - as tumors change, immune responses evolve
« Synergistic - can complement and build on other cancer therapies

« Systemic - can target and destroy tumor cells anywhere in the body

INSTITUTE FOR MOLECULAR MEDICINE AND INFECTIOUS DISEASE
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Immunogenic cell death in cancer therapy
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RONS and immunogenic cell death

= Tumors employ immunosuppressive strategies to escape the body’s normal immune

surveillance and elimination
= Exposure of antigens on tumor cells via the immunogenic cell death
= Several steps in this pathway are ROS dependent

= High ROS amount leads to cell death and debulking of tumor mass, the smaller tumor may

be more manageable by the compromised immune system

= Removal of immunosuppressive cells by plasma can be an additional beneficial outcome

15
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Conceptual Hypothesis

NTP Emission of ICD
A 9 RONS markers and release of
cytokines
C . * o
Tumor £ @D "y
cell . . ./_\ /_\
DR b \4 Lh’f; | "
/N 7 SV E : .
B ** p Proliferation and
RONS- Migrationand 20881 S WO
induced ICD maturation of antigen

presenting cells

Exposure of tumor cells to NTP-produced RONS (A) leads to RONS-induced immunogenic cell death
(ICD) (B) followed by emission of ICD-related markers and the release of key pro-inflammatory
cytokines (C) that enhance migration and maturation of antigen presenting cells (D). These in turn
stimulate the proliferation and activation of tumor-specific T-cells (E). ’
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Immunotherapy with plasma — the early days

00 = FE-DBD, air

1]

= “Immune Escape” big problem with cancer
= |dea: activate immune system with plasma
= Macrophages relatively insensitive against treatment
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Macrophages induced cell death

= Plasma (DBD, air) activated macrophages can induce cancer cell death
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= (A) Cell death of plasma treated macrophages after 24 h performed by propidium iodide (Pl) staining analysis
using flow cytometry. (i) 1 min plasma (ii) 3 min plasma (iii) control.

= (B) Morphology of glioblastoma co-cultured with macrophages and visualized by phase-contrast microscopy
(Ti-U, Nikon) 48 h post-incubation.

18
Kaushik et al. 2016 JPhysD
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Comparison of Two Cell Populations

« 2 leukemic cancer cell lines: Jurkat and THP-1
— Jurkat cells are of lymphoid origin (precursors of T and B lymphocytes)

— THP-1 cells are of myeloid origin (precursors of macrophages and dendritic cells), have
the capacity to produce cellular RONS that are used for destroying pathogens

* Investigation of cell viability, damage-associated molecular patterns, phagocytosis by
antigen presenting cells

H cancers ‘MDPI

=

Article
Differential Effect of Non-Thermal Plasma RONS on
Two Human Leukemic Cell Populations

Hager Mohamed !, Eric Gebski 2 Rufranshell Reyes 200, Samuel Beane 2, Brian Wigdahl 1 Fred C. Krebs 10,
Katharina Stapelmann * and Vandana Miller '*

19
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Cell viability and MitoSox
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Pro-phagocytic DAMPs
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Phagocytosis
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NC STATE UNIVERSITY

Stimulation of Monocyte Migration
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H. Mohamed et al. Cancers. 2021;13(10):2437.
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Summary of the Observations

= THP-1 cells are more resistant to NTP-mediated cytotoxicity
= Nonetheless, THP-1 cells showed increased level of chemotaxis and phagocytosis

=  Phagocytosis without cytotoxicity may open up new avenues for plasma oncology

= Can the plasma chemistry help shed light on the two different cell responses?

24
H. Mohamed et al. Cancers. 2021;13(10):2437.
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Plasma-Liquid Chemistry with Cells
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Plasma-Liquid Chemistry in the Presence
of Organic Matter

= Cells influence the plasma-liquid chemistry in two ways:
= Passive: they just provide a target to react with

= Active: cells contribute to the chemistry (superoxide production) or take up reactive

species to neutralize them (THP-1 cells)

= Closer look at reaction targets in liquids

26
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COST Reference Microplasma Jet

= Designed as reference source:
robust and reproducible

= Allows to contextualize results

= CCP, 13.56 MHz RF, He, He/H,O
and He/O,

= 1 mm electrode distance, 30 mm
plasma channel

= |ntegrated matching network along
with current and voltage probes for
continuous monitoring

COST Reference Microplasma Jet

Golda J et al. Journal of Physics D: Applied Physics. 2016;49(8):84003. 27
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Experimental Conditions

= Total gas flow: 1 slm
= Power constant at 750 m\W
= ~240 Vrys for He/O, and He/H,O
= ~215 Viys for He
= Liquid treatments:
= 12-well plate, 1 ml treatment volume
= 4 mm distance from nozzle to liquid
= All measurements performed in triplicate

28
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Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003
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Start simple: H,0, formation in DI water

H,O, concentration / uM

1200 ]
1000 ]
800 ]
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400 ]
200 E

x50

—=—He/O,
—a—He

Treatment time / min

H,0, in He/H,O plasma-treated
sample is ~30x higher than He,
~50x higher than He/O,

Corresponds well to OES and
previously reported gas phase
measurements”®

*Benedikt J et al. Plasma Sources Sci
Technol. 2016;25(4):045013. 31
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Isolating H,O, origins using OH scavenger

H,0, is produced primarily in gas phase H,0, is produced primarily in aqueous phase
H202 \ HzOz H202 \ H202
‘ H202 H202 ‘ H202 H202 ‘

| | HzOz

DIl water 50 mM DMPO DI water 50 mM DMPO 32
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Isolating H,0, origins using OH scavenger

= OH scavengers: Terephtalic acid
(TA) and spin-trap 5,5-Dimethyl-
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Myers, B. et al. Journal of Physics D: Applied Physics 54.14 (2021): 145202
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Isolating H,O, origins using OH scavenger

o He/O, E = H,0, varies significantly between
a7 solutions
Eh s = Observed previously in phenol*
2 - = -Hel0, D = H abstraction by O from C-H
= 400 . / - ® - He/O, DMPO
S z’/ - & -HelO, TA bonds
Q 4 . .
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T 200 /}f/ ———'____t,/"* tO fOrm H202
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0 1 2 3 4 5
Treatment time / min
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Myers, B. et al. J. Phys. D: Appl. Phys. 54.14 (2021): 145202 *Hefny, M. et al. J. Phys. D: Appl. Phys. 2016:49(40):404002.
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Comparison DMPO, TA, Phenol

7
H3C N+ = Ring structures

H3C)® O = H abstraction by O from C-H
bonds

OH
= QO enters liquid and reacts further to

DMPO Ho form H,O,
0O TA = When ring structures are present,
OH H,O, production increases — rir_lg |
structures become part of the liquid
chemistry

Phenol
35
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O
From Ring Structures to Cysteine Hsﬁ)kOH
= Amino acid cysteine as simple model NH;
1300
. He/ Hzo 1250_: —&— He/O, Plasma Tx. (Cysteine)
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Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003 Treatment



NC STATE UNIVERSITY

Cysteine Modifications

Cys-SH 8x10° Cys-SO,H Cys-SO;H
' - - 1x1010 . .
< 2 2 = Native cysteine
: 2 2 o disappears
= < £ 4uror] completely after 5 min
o 5_3 ;_3 2x10° He/Hzo
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) Cys-S-SH - Cys-SSO, He/-Hle. cystine and
8010 variations
=) 0 S atd] He/H,O He/O : . .
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> > I Control ] Control _ _
24.0x10" 2 2x10° I 0.5 min [l 0.5 min He/O,: oxidation of
£ = B 1 min [ 1 min sulfur
§2.0x101‘1 § 1x10% B 5 min [ 5 min
He/H,0 He/O, O Hem,0 HelO,

37
Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003
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Cysteine Modifications — Origin of Species
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Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003 38
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Conclusions

= QOrganic matter becomes part of the chemistry
= Different types of organic matter affect chemistry differently

= By offering a target for reactive species / precursors for other long-
lived species (e.g. OH / H,0,)

= By providing new precursors to form other species (e.g. H + HO, /
H,0,)
= Living cells actively contribute to liquid chemistry
= By offering a target for reactive species
= By uptake and neutralization of ROS

= By releasing reactive species (TBD) 39
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Challenges and Opportunities

= Modifications on biomolecules can be tuned by using different plasma
sources, voltage conditions, gas admixtures

= Modifications known to nature vs unknown to nature
= QOH/H,0,-driven chemistry vs O-driven chemistry
= Reversible vs irreversible modifications in nature
= Translation from single amino acids to organisms?
= RONS produced by plasma and in the context of redox biology
= Precise manipulation of cellular responses possible?

40
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Outlook — ongoing research

= |dentification of short-lived species in the liquid by EPR spectroscopy
= NO, OH, O in water and cell culture medium
= |mpact of NO-, OH-, and O-rich plasma on cell culture

= Response of cells to plasma treatment — different cellular markers and
cell-produced chemistry

= (Can we use plasma and cell-produced chemistry for "plasma endpoint
detection™ — new NIH project

National Institute of

‘m C LINEBERGER COMPREHENSIVE Biomedical Imaging
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Generation & Transport of Reactive Species
- from the gas phase to the liquid to biological samples

COST jet: - | | | | | | | 160000 — He/02 T —/ T _
——He only ——He 0.6% O, —He 2500 ppm H,0 o

3 = < ] 40000 : < -/ .
* - He/H,O ]
M/__L\\ . 30000 | OHAX) He 4

o ::120000 o h
Plasma chemistry: what is produced and = s0000 | ]
where, how does it interact with liquids, 0000 - OH(A_“XZ)‘JC'B’N o 1
N
g

biological samples, ...

U

s s s s s s s <
0 0.5 1 15 2 25 3 3.5 4 ; 20000 | N
Distance from nozzle / mm -% N(C-B)
£ 10000 -
open effluent water surface i 0
0 ‘ 4 0 4 60000 L | .
. (0] ]
]
E 0.5 35 05 3.5 245000 - )
w ~
~ c Py 3
o 1 3 1 3 £ Z
e Py §30000 |- N, (BX) .
N15 25 15 25 E = 2
c 'g OH(A-X) H
£ 2 ’ 5 2 2 15000 - Np(C-B) e -
o I
= S |
® 2.5 15 25 1.5 .5 0 1 NPRRIVEY 0 B 2R
3] Q 300 400 700 800
S 3 1 3 18
E
U.S. DEPARTMENT OF 7 L Wavelength / nm
EN ERGY Q35 05 35 0.5
4 0 4 0
DE-SC0021329 05 0 05 0 05 43

Position / mm - Position/mm  Myers, B. et al. Journal of Physics D: Applied Physics 54 (2021): 145202



NC STATE UNIVERSITY

Plasma Breakdown and instabilities in the multiphase
plasma-gas bubble-liquid system

Plasma Bubble Reactor for Water Treatment:

Understanding breakdown and streamer development in

plasma bubbles — experimental & theoretical approach

|||||||||||||||||

\ne,max = 7.9%x10'? cm3

\/

Experimental investigation | Bubble shape - nonPDPSim 44
DNS bubble formation
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Plasma Agriculture

=

“Fertigation on Demand” - Plant Sciences Initiative @ NCSU

Fundamentals of BEC Systems & Their Impacts on Plants  Build & Test Lab-Scale/Greenhouse
Fertigation on Demand
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Plasma Agriculture li

Flexible DBD for treatment of fresh produce:

/ Develop mechanically flexible in-package

produce manufacturing

plasma electrodes that conform to fresh
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Characterization of plasma parameters
and optimization of performance
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