

Quantifying progress towards fusion energy gain: the Lawson criterion

2022 PPPL / SULI Introduction to Fusion Energy and Plasma Physics Course Sam Wurzel Technology to Market Advisor US Department of Energy, ARPA-E

June 21st, 2022

Backstory

CHANGING WHAT'S POSSIBL

2015 Fusion Energy Base 2019 ARPA-E 2022

Outline

- ‣ Punchline first: progress towards fusion energy breakeven and gain
- ‣ Review of the Lawson criterion following Lawson's 1955 approach
- ‣ Extend Lawson's analysis to steady-state MCF and pulsed ICF
- ‣ Advanced fuels

PROGRESS TOWARDS FUSION BREAKEVEN AND GAIN

Progress towards energy gain

5

Progress towards energy gain

Adapted from S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

Physics understanding and progress towards energy gain

S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

LAWSON'S 1955 PAPER

"Some criteria for a useful thermonuclear reactor" Lawson (1955)

CHANGING WHAT'S POSSIB

INTRODUCTION

In this report the power balance in thermonuclear reactors is considered and criteria which must be satisfied in a useful reactor are found.

…

Various idealized systems will now be analysed. Possible methods of setting up such systems will not however be discussed.

J. D. Lawson, "Some criteria for a useful thermonuclear reactor," "Technical Report No. GP/R 1807 (1955).

9

Fusion cross section *σ* **and thermal reactivity** ⟨*σv*⟩

 $n_1 n_2 \langle \sigma v \rangle V$ is the rate of "hits" between particles of density n_1 and n_2 with Maxwellian velocity distribution in volume V_{\cdot}

 $\langle \sigma v \rangle$ is the cross section times the relative velocity averaged over a Maxwellian velocity distribution and is a function of temperature T_{\cdot}

Fusion cross sections

D-T reaction has highest cross section at lowest CM energy

Fusion thermonuclear reactivities and fusion power

D-T Fusion has the highest reactivity at the lowest temperature

 $D + T \rightarrow \alpha$ (3.5 MeV) + n (14.1 MeV)

Power produced by fusions in a 50/50 deuterium-tritium plasma of volume *V*: $P_F = n_D n_T \langle \sigma v \rangle \epsilon_F V$

 ϵ_F is the total energy per fusion (17.6 MeV)

12

Bremsstrahlung in a hydrogen plasma

Power emitted as bremsstrahlung In a hydrogen plasma: $P_B = C_B n^2 T^{1/2} V$

 C_B is a constant.

Lawson's first scenario: steady state

‣ Heating power from charged fusion products must equal or exceed bremsstrahlung power

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) Perfect confinement Charged fusion products self-heat

 $P_B = C_B n^2 T^{1/2} V$

Fusion power of alphas $P_c = f_c P_F = f_c$ 1 4 P_n $P_c = f_c P_F = f_c \frac{1}{4} n^2 \langle \sigma v \rangle \epsilon_F V$

> f_c is the fraction of energy in charged fusion products (20% for D-T)

Ideal ignition temperature

Charged fusion power equals bremsstrahlung when

power at
$$
T = 4.3
$$
 keV,
\nwhen
\n
$$
f_c \frac{1}{4} n^2 \langle \sigma v \rangle \epsilon_F V = C_B n^2 T^{1/2} V,
$$
\nindependent of density.

$$
S_c = P_c/V, S_B = P_B/V
$$

Lawson's second scenario: pulsed

- ‣ Plasma temperature **instantaneously** raised from zero to temperature T at $t=0$
- \triangleright Absorbed external heating power P_abs applied over pulse duration *τ*

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) Perfect confinement All fusion products exit the plasma (no self heating)

$Q_{\text{fuel}} =$ Fusion energy Heating energy absorbed by fuel

17

Emergence of the Lawson parameter *nτ*

$$
Q_{\text{fuel}} = \frac{\tau P_F}{\tau P_{\text{abs}} + 3nTV} = \frac{\tau P_F}{\tau P_B + 3nTV}
$$

$$
= \frac{P_F/(3n^2TV)}{P_B/(3n^2TV) + 1/n\tau} = \frac{\langle \sigma v \rangle \epsilon_F/12T}{C_B/3T^{1/2} + 1/n\tau}
$$

 Q_{fuel} is a function of temperature T and "Lawson parameter" $n\tau$.

Lawson's requirement for a "useful" system

Lawson assumed $\eta \approx 1/3$, requiring $Q_{\text{fuel}} > 2$.

$Q_{\text{fuel}} > 2$ *requires high threshold of T and* $n\tau$

LOG_{IO}R

CONCLUSION

Even with the most optimistic possible assumptions it is evident that the conditions for the operation of a useful thermonuclear reactor are very severe.

EXTENDING LAWSON'S ANALYSIS

Extending Lawson's analysis to include thermal conduction and self heating

- ‣ Plasma temperature **instantaneously** raised from zero to t temperature T at $t=0$ and maintained at T until $t=\tau$
- \triangleright Thermal-conduction power loss: $3nTV/\tau_E$
- \triangleright Absorbed external heating power P_abs and self heating P_c applied over pulse duration *τ*

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) Imperfect confinement: *τ_E* is finite

Lawson-type analysis

- \triangleright If $\tau_E \ll \tau$ Lawson parameter is $n\tau_E^+$ and MCF-like
- ► If $τ_E$ \sim *τ* both must be considered

Q_{fuel} vs *T* for various values of $n\tau$

APPLICATION TO STEADY STATE MAGNETIC CONFINEMENT FUSION (MCF)

$Q_{\rm sci} =$ Fusion power Heating power applied accross vacuum boundary

Limit of $\tau \to \infty$, $\tau_{\rm eff} \to \tau_E$ describes idealized steady-state MCF

$Q_{\rm sci}$ and analysis of idealized steady-state MCF experiment

$$
Q_{\text{sci}} = \frac{P_F}{P_{\text{ext}}} = \eta_{\text{abs}} Q_{\text{fuel}} < Q_{\text{fuel}}
$$
\n
$$
P_C + P_{\text{abs}} = P_B + \frac{3nTV}{\tau_E}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{sci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{sci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{sci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{oci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{oci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$
\n
$$
n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}} Q_{\text{oci}})/\sigma \nu_{\text{SE}} / 4 - C_B T^{1/2}}
$$

Fusion "triple product"

APPLICATION TO PULSED INERTIAL CONFINEMENT FUSION (ICF)

Limit of
$$
\tau_E \rightarrow \infty
$$
, $\tau_{\rm eff} \rightarrow \tau$, and $P_B=0$ describes idealized ICF

 \blacktriangleright Energy accounting over confinement duration τ of the hot-spot

CHANGING WHAT

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) (no thermal conduction losses) *τ^E* = ∞ $P_B = 0$ (no bremsstrahlung losses)

Q_{fuel} and analysis of idealized ICF hot-spot

Values of $\eta_{\rm abs}$ and $\eta_{\rm hs}$ correspond to NIF shot N191007 A.B. Zylstra et al., *Phys. Rev. Lett.* **126**, 025001 (2021)

Progress towards energy gain

Additional effects:

- impurities
- profile effects
- $+ more$

S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

ADVANCED FUELS

Advanced fuels summary

Advanced fuels require significantly higher temperatures and Lawson parameters than D-T

36

Advanced fuel challenge: p-¹¹B

 $p +^{11}B \rightarrow 3\alpha$ (8.7 MeV)

Bremsstrahlung is huge challenge!

"Some criteria for a useful thermonuclear reactor," J. D. Lawson, Technical Report No. GP/R 1807 (1955).

THANKS!

sam.wurzel@hq.doe.gov

"Progress toward fusion energy breakeven and gain as measured against the Lawson criterion," S.E. Wurzel and S. C Hsu, Physics of Plasmas **29**, 062103 (2022)

Web

PDF

