

Quantifying progress towards fusion energy gain: the Lawson criterion

2022 PPPL / SULI Introduction to Fusion Energy and Plasma Physics Course Sam Wurzel Technology to Market Advisor US Department of Energy, ARPA-E

June 21st, 2022

Backstory

CHANGING WHAT'S POSSIBLE 2015

Fusion Energy Base 2019

ARPA-E 2022

Outline

- Punchline first: progress towards fusion energy breakeven and gain
- Review of the Lawson criterion following Lawson's 1955 approach
- Extend Lawson's analysis to steady-state MCF and pulsed ICF
- Advanced fuels

PROGRESS TOWARDS FUSION BREAKEVEN AND GAIN

Progress towards energy gain

5

Progress towards energy gain

Adapted from S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

Physics understanding and progress towards energy gain

S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

LAWSON'S 1955 PAPER

"Some criteria for a useful thermonuclear reactor" Lawson (1955)

CHANGING WHAT'S POSSIB

INTRODUCTION

In this report the power balance in thermonuclear reactors is considered and criteria which must be satisfied in a useful reactor are found.

. . .

Various idealized systems will now be analysed. Possible methods of setting up such systems will not however be discussed.

J. D. Lawson, "Some criteria for a useful thermonuclear reactor," "Technical Report No. GP/R 1807 (1955).

9

Fusion cross section σ and thermal reactivity $\langle \sigma v \rangle$

 $n_1n_2\langle \sigma v \rangle V$ is the rate of "hits" between particles of density n_1 and n_2 with Maxwellian velocity distribution in volume *V*.

 $\langle \sigma v \rangle$ is the cross section times the relative velocity averaged over a Maxwellian velocity distribution and is a function of temperature *T*.

Fusion cross sections

D-T reaction has highest cross section at lowest CM energy

Fusion thermonuclear reactivities and fusion power

D-T Fusion has the highest reactivity at the lowest temperature

 $D + T \rightarrow \alpha (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$

Power produced by fusions in a 50/50 deuterium-tritium plasma of volume V: $P_F = n_D n_T \langle \sigma v \rangle \epsilon_F V$

 ϵ_F is the total energy per fusion (17.6 MeV)

12

Bremsstrahlung in a hydrogen plasma

Power emitted as bremsstrahlung In a hydrogen plasma: $P_B = C_B n^2 T^{1/2} V$

 C_B is a constant.

Lawson's first scenario: steady state

 Heating power from charged fusion products must equal or exceed bremsstrahlung power

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) Perfect confinement Charged fusion products self-heat

Bremsstrahlung power $P_B = C_B n^2 T^{1/2} V$

Fusion power of alphas $P_c = f_c P_F = f_c \frac{1}{4} n^2 \langle \sigma v \rangle \epsilon_F V$

 f_c is the fraction of energy in charged fusion products (20% for D-T)

Ideal ignition temperature

Charged fusion power equals bremsstrahlung power at T = 4.3 keV, when

$$f_c \frac{1}{4} n^2 \langle \sigma v \rangle \epsilon_F V = C_B n^2 T^{1/2} V,$$

independent of density.

$$S_c = P_c/V, S_B = P_B/V$$

Lawson's second scenario: pulsed

- Plasma temperature **instantaneously** raised from zero to temperature T at t = 0
- Absorbed external heating power $P_{\rm abs}$ applied over pulse duration τ

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) Perfect confinement All fusion products exit the plasma (no self heating)

$Q_{\text{fuel}} = \frac{\text{Fusion energy}}{\text{Heating energy absorbed by fuel}}$

17

Emergence of the Lawson parameter $n\tau$

$$Q_{\text{fuel}} = \frac{\tau P_F}{\tau P_{\text{abs}} + 3nTV} = \frac{\tau P_F}{\tau P_B + 3nTV}$$
$$= \frac{P_F/(3n^2TV)}{P_B/(3n^2TV) + 1/n\tau} = \frac{\langle \sigma v \rangle \epsilon_F/12T}{C_B/3T^{1/2} + 1/n\tau}$$

 Q_{fuel} is a function of temperature T and "Lawson parameter" $n\tau$.

Lawson's requirement for a "useful" system

Lawson assumed $\eta \approx 1/3$, requiring $Q_{\text{fuel}} > 2$.

$Q_{\text{fuel}} > 2$ requires high threshold of T and $n\tau$

- 2

~8

~ 10

~ 12

LOG₁₀ R

CONCLUSION

Even with the most optimistic possible assumptions it is evident that the conditions for the operation of a useful thermonuclear reactor are very severe.

EXTENDING LAWSON'S ANALYSIS

Extending Lawson's analysis to include thermal conduction and self heating

 $n_D = n_T$ (50% deuterium, 50% tritium)

 $n = n_D + n_T$ (pure hydrogen plasma)

 $T = T_i = T_{\rho}$ (thermal equilibrium)

Imperfect confinement: τ_F is finite

- Plasma temperature **instantaneously** raised from zero to temperature *T* at t = 0 and maintained at *T* until $t = \tau$
- Thermal-conduction power loss: $3nTV/\tau_E$
- Absorbed external heating power $P_{\rm abs}$ and self heating P_c applied over pulse duration τ

 $P_{abs} \xrightarrow{P_{c}} P_{n}$ $P_{abs} \xrightarrow{P_{c}} P_{n}$

CHANGING WHAT'S POSSIBLE

Lawson-type analysis

- If $\tau_E \ll \tau$ Lawson parameter is $n\tau_E$ and MCF-like
- If $\tau_E \sim \tau$ both must be considered

$Q_{\rm fuel}$ vs T for various values of $n\tau$

APPLICATION TO STEADY STATE MAGNETIC CONFINEMENT FUSION (MCF)

$Q_{\rm sci} = \frac{Fusion \text{ power}}{Heating \text{ power applied accross vacuum boundary}}$

Limit of $\tau \to \infty, \tau_{\rm eff} \to \tau_E$ describes idealized steady-state MCF

$Q_{\rm sci}$ and analysis of idealized steady-state MCF experiment

$$Q_{\text{sci}} = \frac{P_F}{P_{\text{ext}}} = \eta_{\text{abs}} Q_{\text{fuel}} < Q_{\text{fuel}}$$
Power balance:

$$P_c + P_{\text{abs}} = P_B + \frac{3nTV}{\tau_E}$$

$$n\tau_E = \frac{3T}{(f_c + Q_{\text{fuel}}^{-1})\langle\sigma\nu\rangle\epsilon_F/4 - C_BT^{1/2}}$$

$$n\tau_E = \frac{3T}{(f_c + \eta_{\text{abs}}Q_{\text{sci}}^{-1})\langle\sigma\nu\rangle\epsilon_F/4 - C_BT^{1/2}}$$

$$\eta_{\text{abs}} = 0.9$$

$$\eta_{\text{abs}} =$$

CHANGING WHAT'S POSSIBLE

Fusion "triple product"

APPLICATION TO PULSED INERTIAL CONFINEMENT FUSION (ICF)

Limit of
$$\tau_E \to \infty, \tau_{\rm eff} \to \tau$$
, and $P_B = 0$ describes idealized ICF

 Energy accounting over confinement duration \u03c6 of the hot-spot

CHANGING WHAT

 $n_D = n_T$ (50% deuterium, 50% tritium) $n = n_D + n_T$ (pure hydrogen plasma) $T = T_i = T_e$ (thermal equilibrium) $\tau_E = \infty$ (no thermal conduction losses) $P_B = 0$ (no bremsstrahlung losses)

Q_{fuel} and analysis of idealized ICF hot-spot

Values of η_{abs} and η_{hs} correspond to NIF shot N191007 A. B. Zylstra et al., *Phys. Rev. Lett.* **126**, 025001 (2021)

Progress towards energy gain

Additional effects:

- impurities
- profile effects
- + more

S.E. Wurzel and S. C Hsu Physics of Plasmas **29**, 062103 (2022)

ADVANCED FUELS

Advanced fuels summary

Advanced fuels require significantly higher temperatures and Lawson parameters than D-T

36

Advanced fuel challenge: p-¹¹B

 $p + {}^{11}B \rightarrow 3\alpha \ (8.7 \text{ MeV})$

Bremsstrahlung is huge challenge!

"Some criteria for a useful thermonuclear reactor," J. D. Lawson, Technical Report No. GP/R 1807 (1955).

THANKS!

sam.wurzel@hq.doe.gov

"Progress toward fusion energy breakeven and gain as measured against the Lawson criterion," S.E. Wurzel and S. C Hsu, Physics of Plasmas **29**, 062103 (2022)

Web

PDF

CHANGING WHAT'S POSSIBLE