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About me

• 1990: born, Saratoga Springs, NY
• Activities: track, cross-country, trombone
• Wanted (and still want) to do something 

about climate change and decarbonization
• 2008-2012: majored in physics at Harvard

• 2011: SULI internship @ PPPL!

• 2012-2017: PhD in applied physics at 
Columbia University

• 2017-2019: postdoc at the Max Planck Inst. 
for Plasma Physics, Greifswald, Germany

• 2019-present: staff research physicist, PPPL
• 2021: mentored first SULI student
• 2022: presented first SULI talk
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Introduction

3



What is a stellarator?

• Toroidal magnetic plasma confinement 
device

• Magnetic field forms nested, closed 
flux surfaces

• Magnetic field is generated primarily 
by magnets external to the plasma
• Plasma current not required
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The Wendelstein 7-X Stellarator
Max Planck Institute for Plasma Physics, Greifswald, Germany
Image: T. Klinger et al., Nucl. Fusion 2019



Why build a stellarator?

• Generate electricity
• Inherently steady-state operation
• Low/no plasma current required

– Lower vulnerability to disruptions
– Lower recirculating power required

• Perform basic plasma research
• Single-species plasmas
• Pair (positron/electron) plasmas
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S. Woodruff, Woodruff ScientificJ. P. Kremer et al., Phys. Rev. Lett. 2006



Toroidal geometry and magnetic fields
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Basics of toroidal geometry

• Torus: a doughnut shape
• Cylindrical representation

• R: radial dimension; distance from z axis
• z: vertical dimension
• 𝟇: azimuthal/toroidal dimension

• Toroidal coordinates
• r: minor radius; distance from yellow curve
• 𝞱: poloidal angle; short way around the torus
• 𝟇: toroidal angle; long way around the torus
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Toroidal magnetic confinement: motivation

• Charged particles tend to gyrate around 
magnetic field lines 
⟶ confined in the direction 
perpendicular the magnetic field B

• Particles can stream freely along 
magnetic field lines 
⟶ not intrinsically confined parallel to B

• If the field lines wrap around form a torus
• Particles stream quickly around the torus
• Particles are slower to exit the torus
• Enclosing wall is protected from the plasma 

(and vice versa)
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L.-M. Imbert-Gérard et al., Introduction to Stellarators, 2020



A purely toroidal field is not sufficient to confine a 
quasineutral plasma

• Curvature and gradient in magnetic field cause 
electrons, ions to drift in opposite directions

• Charge separation creates a vertical electric field
• All particles drift outward in E×B direction
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L.-M. Imbert-Gérard et al., Introduction to Stellarators, 2020
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To confine a plasma in a toroidal field, the field lines must 
twist helically
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• Helical field lines sweep particles quickly from the 
top to the bottom of the torus and back

• Vertical drift motion persists, but alternates 
between inwards and outwards

• Sending the particles on helical paths is 
analogous to turning a honey dipper
• Holding the dipper still: honey drips off
• Rotating the dipper: honey remains confined

L.-M. Imbert-Gérard et al.

iStockPhoto



Flux surfaces and rotational transform

• For good confinement, magnetic field lines 
should form nested flux surfaces
• Surfaces surround a central curve: magnetic axis

• Rotational transform, 𝞲 is a measure of helical 
twistiness of the field on each flux surface
• In tokamaks: the safety factor q is 1/𝞲

• Generating rotational transform
• Tokamaks use a toroidal plasma current
• Stellarators use external coils/magnets
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M. Bernert, PhD thesis, LMU Munich

magnetic 
axis



How to generate a stellarator magnetic field
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Origins of the stellarator

• Invented in the 1950s by 
Princeton astronomy professor 
Lyman Spitzer, Jr.

• Developed as part of Project 
Matterhorn, which eventually 
became the Princeton Plasma 
Physics Laboratory
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Lyman Spitzer with the Model A stellarator
Image: PPPL



How can external coils generate rotational transform?

• Spitzer’s approach: solenoidal tube twisted into a figure-8
• Crucial feature: torsion, or the departure of the tube’s axis from a single plane
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T. Coor et al., Phys. Fluids 1958 PPPL file photo



Rotational transform in a figure-8 solenoid

• Magnetic field in the figure-8 is 
approximately solenoidal, i.e.
everywhere parallel to the central 
axis of the tube

15K. C. Hammond    |    Introduction to Fusion Energy and Plasma Physics Course    |    June 15, 2022

L. Spitzer, Phys. Fluids 1958



Rotational transform in a figure-8 solenoid

• Magnetic field in the figure-8 is 
approximately solenoidal, i.e.
everywhere parallel to the central 
axis of the tube

16K. C. Hammond    |    Introduction to Fusion Energy and Plasma Physics Course    |    June 15, 2022

K L

M N

L. Spitzer, Phys. Fluids 1958



Tracing a field line around the track

• Initialize a field line at at point in 
cross-section K a distance r from 
the central axis
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Top stretch (K-L)

• Field line trajectory
• Remains on horizontal plane
• Heads into the slide in the cross-

section view
• Remains at “3:00” with respect to 

center axis
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Back stretch (L-M)

• Field line trajectory
• Remains on plane of curve (tilted an 

angle 𝞪 to the horizontal)
• Turns around in the cross-section 

view
• “Puncture point” is reflected in the 

axis perpendicular to the plane of the 
curve
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Bottom stretch (M-N)

• Field line trajectory
• Remains on horizontal plane
• Heads out of the slide in the cross-

section view
• Remains at an angle 2𝞪 about the 

central axis with respect to the 
horizontal plane
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Front stretch (N-K)

• Field line trajectory
• Remains on plane of curve (tilted an 

angle 𝞪 to the horizontal)
• Turns around in the cross-section 

view
• “Puncture point” is reflected in the 

axis perpendicular to the plane of the 
curve

• Remains at an angle 3𝞪 about the 
central axis with respect to the plane 
of the curve
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Field line has rotated poloidally upon its return to the 
starting plane!

• “Puncture point” has rotated an 
angle of 4𝞪 from its starting location 
with respect to the central axis

• This corresponds to a rotational 
transform 𝞲 = 4𝞪/(2𝞹)

• Same argument applies for any 
radial distance from the central axis 
⟶ every flux surface exhibits the 
same rotational transform
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Rotational transform can also arise from a  helically rotating 
poloidal cross-section

• This effect can be achieved with 
suitable coil shaping
• Helical windings
• Modular coils with non-planar shapes
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P. Helander, Rep. Prog. Mod. Phys., 2014

Max Planck Institute for Plasma Physics M. Landreman

helical 
coils

Modular coils



Stellarator coils can take many forms

• TJ-II, CIEMAT, Madrid, Spain
• “Heliac” configuration
• Most coils are circular and 

planar
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Stellarator coils can take many forms

• Large Helical Device (LHD), National 
Institute for Fusion Science, Toki, Japan
• Two superconducting helical coils provide 

most of the magnetic field
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Stellarator coils can take many forms

• CNT, Columbia University, 
New York, NY, USA
• Arguably the simplest stellarator ever 

built
• Four circular planar coils
• Two coils are interlocked and tilted
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J. P. Kremer et al., Phys. Rev. Lett. 2006



Stellarator coils can take many forms

• Helically Symmetric Experiment 
(HSX), University of Wisconsin, 
Madison, WI, USA
• Combination of Modular, “wiggly” 

coils and planar coils supply the 
main field

• Modular coils optimized for good 
confinement
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HSX Group, University of Wisconsin



Stellarator coils can take many forms

• Wendelstein 7-X (W7-X), Max 
Planck Institute for Plasma Physics, 
Greifswald, Germany
• Most advanced stellarator built to date
• Modular coils optimized for good 

confinement
• Superconducting coils
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Improving confinement
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Helical, twisting field lines are necessary but not sufficient 
for good confinement

• Early stellarators exhibited poor energy 
and particle confinement despite 
producing flux surfaces with rotational 
transform

• Helical field lines generally confine 
passing particles well, but not 
necessarily trapped particles
• Trapped particles bounce back and forth 

between points with high field strength due 
to magnetic mirror effect

• Passing particles have a high enough v∥/v⊥
orbit toroidally without bouncing
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R. Fitzpatrick



Orbits in a stellarator with poor trapped-particle 
confinement
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Max Planck Institute 
for Plasma Physics



Trapped particle orbits can be confined if the plasma 
exhibits certain symmetries

• Noether’s Theorem: if a physical system has a continuous symmetry, there is a 
corresponding quantity that remains constant (conserved) in time

• We seek symmetries that conserve the radial position (flux surface) of all particles, 
both trapped and passing
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Simplest approach: axisymmetry

• Axisymmetry (cylindrical symmetry): 
plasma and magnetic field are invariant 
in the toroidal dimension

• Trapped particles remain confined
• But: axisymmetric plasmas…

• Do not exhibit torsion of the magnetic axis 
or helical rotation

• Require a large plasma current to 
generate the helical field line twist

• Are not stellarators 😭

• For more on axisymmetric plasmas: see 
talk on tokamaks tomorrow by T. Wilks
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Max Planck Institute for Plasma Physics



Alternate approach: quasisymmetry

• Quasisymmetry: invariance of the 
field strength |B| on a flux surface 
along a carefully chosen magnetic 
coordinate

• Coordinate system consists of [1]:
• Flux surface label 𝟁
• Poloidal angle 𝞱B

• Toroidal angle 𝟇B

• Field lines are straight lines in 𝞱B, 𝟇B

• In quasisymmetry, |B| contours are 
also straight lines
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M. Landreman and E. Paul, 
Phys. Rev. Lett. 2022[1] A. H. Boozer, Phys. Fluids, 1983
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With the right symmetries, stellarators can confine trapped 
particles!
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Max Planck Institute 
for Plasma Physics



How to design a stellarator
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Numerical optimization is used to design stellarator plasmas 
with symmetry and other desirable properties

• Typical approach: 
• Define a weighted sum of objective functions for confinement and other properties:
𝟀2 = 𝞴1 𝟀symmetry

2 + 𝞴2 𝟀stability
2 + 𝞴3 𝟀turbulence

2 + …
• Start with an initial guess of a plasma
• Iteratively perturb the plasma to minimize the objective functions

• Frequently used optimization codes
• STELLOPT [2]
• ROSE (Rose Optimizes Stellarator Equilibria) [3]
• SIMSOPT [4]
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[2] https://github.com/PrincetonUniversity/STELLOPT
[3] M. Drevlak et al., Nucl. Fusion 2019
[4] https://github.com/hiddenSymmetries/simsopt

https://github.com/PrincetonUniversity/STELLOPT
https://github.com/hiddenSymmetries/simsopt


Modern stellarator coils are typically designed with an 
optimized plasma in mind

• Designing coils for a stellarator is an ill-posed problem: many nonunique 
solutions

• Designer must impose constraints
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M. Landreman, Nucl. Fusion 2017



Merkel’s method has been used to define coils on many 
current stellarators

1. Define a winding surface outside the plasma
2. Calculate surface current distribution necessary to confine plasma
3. Discretize the surface current into curves 
4. Design coils from the shapes of the curves
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P. Merkel, Nucl. Fusion 1987
M. Landreman, Nucl. Fusion 2017
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Current areas of research*
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Coil simplification: background

• Coils are one of the main cost drivers of 
current stellarators
• Complex geometry
• Tight tolerances

• Reducing complexity and/or increasing 
tolerances can reduce costs and make the 
stellarator more attractive as a reactor concept
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Coils and plasma for the NCSX stellarator, which
was canceled due to delays and cost overruns



Coil simplification: optimization of the winding surface

• Initial choice of winding surface in 
Merkel’s method may not be the 
best one (or even a good one)

• Winding surface geometry can be 
optimized to improve:
• Field accuracy
• Current density (coil-coil separation)
• Enclosed volume (more room for

components)
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E. Paul, Nucl. Fusion 2018

Optimization of the W7-X winding surface



Coil simplification: direct optimization of coil shapes

• Model each coil as a parametric 
curve

• Optimize the curve parameters for:
– Field accuracy
– Coil-coil separation
– Curvature
– etc.

• Constraints can be applied to curves,
e.g. to enable simpler maintenance

• Codes: FOCUS, COILOPT++
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Initial coils
Optimized coils

C. Zhu, Nucl. Fusion 2018

T. Brown et al., 
SOFE 2015

Inboard 
view

Outboard 
view

Reactor concept with 
straight-outer-leg coils

Optimizing 
coils with 
FOCUS



Coil simplification: use permanent magnets for shaping

• External permanent magnets cannot create a toroidal magnetic field, but they can 
contribute to 3D shaping necessary for optimal plasma properties

• Recent designs combine planar coils with arrays of magnets
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Z. Y. Lu et al., Cell Rep. Phys. Sci., 2022 MUSE: tabletop experiment at PPPL
T. Qian et al.

NCSX with scaled-down field
K. C. Hammond et al.



Divertor design: background

• Divertors 
• Collect plasma heat and particle fluxes that 

escape confinement region
• Direct fuel exhaust (helium) out of reactor

• Design and placement of present-day 
stellarator divertors guided from magnetic 
topology
• LHD: helical divertor
• W7-X: island divertor
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S. Masuzaki, Nucl. Mat. Energy 2019
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R. C. Wolf et al., Phys. Plasmas 2019



Divertor design: non-resonant divertors

• Sometimes, the topological guidelines 
aren’t so obvious

• Non-resonant divertors must be used in 
the absence of clear island chains, helical 
x-points, etc.
• Heat and particle flux still tend to exhibit 

well-defined patterns
• Non-resonant divertors must be localized to

these patterns

46K. C. Hammond    |    Introduction to Fusion Energy and Plasma Physics Course    |    June 15, 2022

HSX plasma

Simulated particle fluxes through a 
surface enclosing the plasma

A. Bader et al.,, Phys. Plasmas 2016



Summary

• Stellarators are toroidal magnetic plasma confinement devices
• Three-dimensional, non-axisymmetric geometry
• Magnetic field generated by external coils
• Little to no plasma current required

• Stellarator coils can take on many forms
• Confining magnetic field must exhibit rotational transform and sufficient symmetry 

to confine trapped particles
• Numerical optimization is crucial element of modern stellarator design
• There is much more to be learned!

47K. C. Hammond    |    Introduction to Fusion Energy and Plasma Physics Course    |    June 15, 2022



Further reading

• Book recommendation:

https://arxiv.org/abs/1908.05360
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https://arxiv.org/abs/1908.05360
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Tokamaks and stellarators represent alternate 
approaches to toroidal magnetic confinement

Tokamak
• (nominally) axisymmetric / 2-dimensional
• Helical twist of the magnetic field is 

created by plasma current
– Input power required to drive current

Stellarator
• Non-axisymmetric / 3-dimensional
• Helical twist of the magnetic field is 

created by external magnets/coils
– Easier to operate in a steady state
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