A review of the stellarator concept

Princeton Science Action (2013)

PPPL internship (2013)

Princeton A.B. Astrophysical Sciences (2011-2015)

UMD Ph.D. Physics (2015-2020)

Outline

- Magnetic confinement without symmetry
- Ingredients of stellarator confinement
- How do we "cook" a stellarator?
- Stellarators in context

Single particle motion Review: [Hussein Day 2]

Straight field provides perpendicular confinement

Single particle motion Review: [Hussein Day 2]

Straight field provides perpendicular confinement

Avoid end losses!

$$B \sim 1/R$$

The solution: rotational transform

The solution: rotational transform

$$\iota = \frac{\# \text{ poloidal turns}}{\# \text{ toroidal turns}} = \frac{1}{q}$$

"rotational transform"

"safety factor"

$$\iota = 3/2$$

The solution: rotational transform

"rotational transform"

"safety factor"

Trapped particles and drifts

Trapped particles and drifts

Trapped particles and drifts

Trapped particles and drifts

What about orbits in a stellarator?

Generating rotational transform

Expansion near the magnetic axis $\iota = \frac{1}{2\pi} \int_0^L \frac{\left[\frac{\mu_0 J}{2B_0} - (\cosh \eta - 1)\delta' - \tau\right] dl}{\cosh \eta} - N$

Generating rotational transform

Generating rotational transform

Large Helical Device

Generating rotational transform

Spitzer's figure-eight

Expansion near the magnetic axis

Outline

- Magnetic confinement without symmetry
- Ingredients of stellarator confinement
- How do we "cook" a stellarator?
- Stellarators in context

The zoology of particle orbits in 3D fields

Perturbed tokamak

ripple trapped

D.A. Spong et al, APS DPP (2014).

The zoology of particle orbits in 3D fields

D.A. Spong et al, APS DPP (2014).

Perturbed tokamak

ripple trapped

The zoology of particle orbits in 3D fields

D.A. Spong et al, APS DPP (2014).

ripple trapped

Collisionless guiding center confinement

$$\mathcal{L}(\boldsymbol{x}, \dot{\boldsymbol{x}}) = m \frac{|\dot{\boldsymbol{x}}|^2}{2} + q \boldsymbol{A}(\boldsymbol{x}) \cdot \dot{\boldsymbol{x}}$$

Average over fast gyration

 $\mathcal{L}(\psi,\theta,\phi,\dot{\psi},\dot{\theta},\dot{\phi}) = \mathcal{L}(\psi,\frac{B(\psi,\theta,\phi)}{\psi},\dot{\psi},\dot{\theta},\dot{\phi})$

Collisionless guiding center confinement - Axisymmetry

$$\frac{\partial B}{\partial \phi} = 0 \to \frac{dp_{\phi}}{dt} = 0$$

$$p_{\phi} = mRv_{\phi} + qRA_{\phi}$$

 $\mathcal{L}($

Collisionless guiding center confinement - Axisymmetry

$$\frac{\partial B}{\partial \phi} = 0 \rightarrow \frac{dp_{\phi}}{dt} = 0$$
$$p_{\phi} = m R v_{\phi} + q R A_{\phi}$$

Const. on ψ surfaces

Magnetic surface Trapped orbit

Collisionless guiding center confinement - Quasisymmetry

$$\eta = M\theta - N\phi$$
$$\chi = M'\theta - N'\phi$$

$$\frac{\partial B}{\partial \eta} = 0 \to \frac{dp_{\eta}}{dt} = 0$$

$$p_{\eta} = mv_{\eta} + qF(\psi)$$

Collisionless guiding center confinement - Quasisymmetry

 $\eta = M\theta - N\phi$ $\chi = M'\theta - N'\phi$

$$\frac{\partial B}{\partial \eta} = 0 \to \frac{dp_{\eta}}{dt} = 0$$

Const. on ψ surfaces

L(

Collisionless guiding center confinement - Quasisymmetry

$$\eta = M\theta - N\phi$$
$$\chi = M'\theta - N'\phi$$

$$\frac{\partial B}{\partial \eta} = 0 \to \frac{dp_{\eta}}{dt} = 0$$

Const. on ψ surfaces

What does this look like?

Quasi-poloidal symmetry – Quasi-Poloidal Stellarator (QPS)

 $\eta = M\theta - N\phi$

$$\frac{\partial B}{\partial \theta} \approx 0 \rightarrow \frac{d p_\theta}{d t} \approx 0$$

D.A. Spong et al, IAEA (2003).

B on ψ surface

Ф

Quasi-helical symmetry – Helically Symmetric eXperiment (HSX)

$$\frac{\partial B}{\partial \eta} \approx 0 \to \frac{dp_{\eta}}{dt} \approx 0 \qquad \eta = \theta - \phi$$

Quasi-axisymmetry – National Compact Stellarator eXperiment (NCSX)

 $\eta = M\theta - N\phi$

B on ψ surface

Collisionless guiding center confinement - Omnigeneity

 $H(p,q,\lambda) \rightarrow$ Hamiltonian depending on slowly varying parameter $\frac{\lambda}{\lambda} \ll \omega \rightarrow$ parameters varying slowly in comparison with frequency

 $J(H, \lambda) = \oint p(H, q, \lambda) dq$ = adiabatic invariant is conserved

Collisionless guiding center confinement - Omnigeneity

 $H(p,q,\lambda) \rightarrow$ Hamiltonian depending on slowly varying parameter $\frac{\lambda}{\lambda} \ll \omega \rightarrow$ parameters varying slowly in comparison with frequency

 $J(H, \lambda) = \oint p(H, q, \lambda) dq$ = adiabatic invariant is conserved

Recall - Magnetic moment conservation

Assuming $\dot{B}/B \ll \Omega$, $J = \oint p_{\theta} d\theta = \oint m v_{\perp} \rho \ d\theta = \left(\frac{4\pi \ m}{q}\right) \frac{m v_{\perp}^2}{2B} = \text{const.}$

 $\mu =$ "magnetic moment"

Collisionless guiding center confinement - Omnigeneity

Trapped orbit

D.A. Spong et al, IAEA (2003).

Assuming drift frequency << bounce frequency,

$$J_{||}(\psi, \alpha, E, \mu) = \oint dl \, v_{||}(\psi, \alpha, E, \mu) = \text{const.}$$

"parallel adiabatic invariant"

Collisionless guiding center confinement - Omnigeneity

Trapped orbit

D.A. Spong et al, IAEA (2003).

$$\frac{\partial J_{||}}{\partial \alpha} = 0 \rightarrow \text{"omnigeneity"}$$

Assuming drift frequency << bounce frequency,

$$J_{||}(\psi, \alpha, E, \mu) = \oint dl \, v_{||}(\psi, \alpha, E, \mu) = \text{const.}$$

"parallel adiabatic invariant"

Collisionless guiding center confinement - Omnigeneity

Far from omnigeneous

Close to omnigeneous

H. Yamaguchi, Nuclear Fusion 59 (2019).

Collisionless guiding center confinement - Omnigeneity

Collisional guiding center confinement

Collisional guiding center confinement [Parra Day 3]

Magnetic field integrability

NCSX Modular Coils

D. Strickler et al, IAEA (2004).

Magnetic field integrability

NCSX Modular Coils

Magnetic field integrability – Hamiltonian nature of field line flow

 $A(\psi_T, \theta, \phi) = \psi_T \nabla \theta - \psi_P(\psi_T, \theta, \phi) \nabla \phi$ $B(\psi_T, \theta, \phi) = \nabla \psi_T \times \nabla \theta - \nabla \psi_P \times \nabla \phi$

Magnetic field integrability – Hamiltonian nature of field line flow

 $A(\psi_T, \theta, \phi) = \psi_T \nabla \theta - \psi_P(\psi_T, \theta, \phi) \nabla \phi$ $B(\psi_T, \theta, \phi) = \nabla \psi_T \times \nabla \theta - \nabla \psi_P \times \nabla \phi$

$$\frac{d\theta}{d\phi} = \frac{\boldsymbol{B} \cdot \nabla \theta}{\boldsymbol{B} \cdot \nabla \phi} = \frac{\partial \psi_P}{\partial \psi_T}$$
$$\frac{d\psi_T}{d\phi} = \frac{\boldsymbol{B} \cdot \nabla \psi_T}{\boldsymbol{B} \cdot \nabla \phi} = -\frac{\partial \psi_P}{\partial \theta}$$

Hamiltonian $\rightarrow \psi_P$ coordinate $\rightarrow \theta$ momentum $\rightarrow \psi_T$ time $\rightarrow \phi$

Magnetic field integrability – Hamiltonian nature of field line flow

 $A(\psi_T, \theta, \phi) = \psi_T \nabla \theta - \psi_P(\psi_T, \theta, \phi) \nabla \phi$ $B(\psi_T, \theta, \phi) = \nabla \psi_T \times \nabla \theta - \nabla \psi_P \times \nabla \phi$

$$\frac{d\theta}{d\phi} = \frac{\boldsymbol{B} \cdot \nabla \theta}{\boldsymbol{B} \cdot \nabla \phi} = \frac{\partial \psi_P}{\partial \psi_T}$$
$$\frac{d\psi_T}{d\phi} = \frac{\boldsymbol{B} \cdot \nabla \psi_T}{\boldsymbol{B} \cdot \nabla \phi} = -\frac{\partial \psi_P}{\partial \theta}$$

Hamiltonian $\Rightarrow \psi_P$ coordinate $\Rightarrow \theta$ momentum $\Rightarrow \psi_T$ time $\Rightarrow \phi$

$$\frac{\partial \psi_P(\theta, \psi_T, \phi)}{\partial \phi} = 0 \rightarrow \text{integrability}$$
$$\boldsymbol{B} \cdot \nabla \psi_p = 0 \text{ [i.e., } \psi_p \text{ is flux label]}$$

Magnetic field integrability – Hamiltonian nature of field line flow

$$B(\psi_T, \theta, \phi) = \nabla \psi_T \times \nabla \theta - \nabla \psi_P \times \nabla \phi$$
$$\psi_P = \frac{1}{2} \psi_T^2 + \epsilon \cos(\theta - \phi)$$
Integrable Non-integrable

Magnetic field integrability – Hamiltonian nature of field line flow

$$B(\psi_T, \theta, \phi) = \nabla \psi_T \times \nabla \theta - \nabla \psi_P \times \nabla \phi$$
$$\psi_P = \frac{1}{2} \psi_T^2 + \epsilon \left[\cos(4\theta - \phi) + \cos(4\theta - 2\phi) + \cos(4\theta - 3\phi) \right]$$
Integrable Non-integrable

...and many more

- ✓MHD stability
- ✓ Collisional "bootstrap" current
- ✓ Energetic particle confinement
- ✓ Equilibrium β limit
- ✓ Divertor configuration
- ✓ Reduction of turbulent transport
- ✓ Coil feasibility

...and many more

- ✓MHD stability
- ✓ Collisional "bootstrap" current
- ✓ Energetic particle confinement ✓ Equilibrium β limit
- ✓ Divertor configuration
- ✓ Reduction of turbulent transport
 ✓ Coil feasibility

ASG Superconductors

Outline

- Magnetic confinement without symmetry
- Ingredients of stellarator confinement
- How do we "cook" a stellarator?
- Stellarators in context

How do we "cook" a stellarator?

MHD equilibrium optimization Review: [Wright Day 3]

$$(\nabla \times B) \times B = \mu_0 \nabla p$$
 in V_{plasma}
 $\nabla \cdot B = 0$ in V_{plasma}
 $B \cdot \hat{n} = 0$ on S_{plasma}
Given $p(\psi)$, $I_T(\psi)$

$$\min_{S_{\text{plasma}}} f(\boldsymbol{B}(S_{\text{plasma}}), S_{\text{plasma}})$$

How do we "cook" a stellarator?

MHD equilibrium optimization Review: [Wright Day 3]

How do we "cook" a stellarator? Coil optimization

Total normal field to plasma boundary

$$\boldsymbol{B}(\boldsymbol{x}) \cdot \boldsymbol{\widehat{n}}(\boldsymbol{x}) = \boldsymbol{B}_{P}(\boldsymbol{x}) \cdot \boldsymbol{\widehat{n}}(\boldsymbol{x}) + \frac{\mu_{0}}{4\pi} \int_{\mathbb{R}^{3} \setminus V_{\text{plasma}}} d^{3}\boldsymbol{x}' \frac{\boldsymbol{J}_{C}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}') \cdot \boldsymbol{\widehat{n}}(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{x}'|^{3}}$$

$$\min_{J_{C}} \left(\int_{S_{\text{plasma}}} d^{2}x \left(\boldsymbol{B} \cdot \widehat{\boldsymbol{n}} \right)^{2} + (\text{coil complexity}) \right)$$

Outline

- Magnetic confinement without symmetry
- Ingredients of stellarator confinement
- How do we "cook" a stellarator?
- Stellarators in context

The result of optimization

D.A. Spong et al, APS DPP (2014).

The result of optimization – Wendelstein 7-X

The result of optimization – Wendelstein 7-X

"Not optimized" (scaled to W7-X)

T. Sunn Pedersen et al, IAEA (2021).

Comparison with tokamak performance

Overview of stellarators & tokamaks

Tokamaks

- ✓ Automatic guiding center confinement
- ✓ Automatic integrability
- ✓ Simpler design
- × Requires large plasma current
- **X** Steady-state is challenging/inefficient

Stellarators

- × Confinement optimization required
- × Shaping by complicated coils/magnets
- ✓ Low recirculating power
- ✓ No plasma-terminating disruptions
- ✓ No Greenwald density limit

Plasma Phys. Control. Fusion 54 (2012) 124009 (12pp)

doi:10.1088/0741-3335/54/12/124009

Stellarator and tokamak plasmas: a comparison

P Helander, C D Beidler, T M Bird, M Drevlak, Y Feng, R Hatzky, F Jenko, R Kleiber, J H E Proll, Yu Turkin and P Xanthopoulos

Max-Planck-Institut für Plasmaphysik, Greifswald and Garching, Germany

Open questions and new frontiers

Can we optimize stellarators for reduced turbulence?

J. Alucon et al, *PPCF* 62 (2020).

Can we confine stellarators with permanent magnets?

C. Zhu et al, Nuclear Fusion, 60 (2020).

Why can stellarators routinely violate linear MHD stability limits?

A. Weller et al, Fusion Science & Tech., 50 (2006).

An introduction to stellarators: from magnetic fields to symmetries and optimization (arxiv:1908.05360)

- 1. Introduction
- 2. Background
- 3. Electric and magnetic fields: Maxwell's equations
- 4. Classical mechanics
- 5. Single particle motion in electromagnetic fields
- 6. Coordinate systems
- 7. Toroidal magnetic confinement
- 8. Coupling of particles and electromagnetic fields: MHD models
- 9. Magnetic coordinates
- 10. Challenges associated with 3D equilibrium fields
- 11. Models of 3D equilibrium magnetic fields
- 12. Symmetries in stellarators
- 13. Optimization for stellarator design
- 14. New frontiers of optimization

	MHD equilibrium	Force-free fields	Vacuum fields
	(surfaces assumed)		
Hyp.	$oldsymbol{J} imes oldsymbol{B} eq 0$	$oldsymbol{J} imes oldsymbol{B} = 0$	$oldsymbol{J}=0$
	abla p eq 0	$\nabla p = 0$ and $\lambda = \text{const.}$	abla p=0
	$oldsymbol{J} imes oldsymbol{B} = abla p$	$ abla imes oldsymbol{B} = \lambda oldsymbol{B}$	$\Delta \widetilde{\Phi}_B = 0$
PDE	$ abla \cdot \boldsymbol{B} = 0$		
model	$\mu_0 oldsymbol{J} = abla imes oldsymbol{B}$	$\mu_0 oldsymbol{J} = abla imes oldsymbol{B}$	
Given	$p(\psi),\iota(\psi),\Psi_T$	λ, Ψ_T	I_P
Unkn.	В	В	$\widetilde{\Phi}_B$
With	$oldsymbol{J}$ function of $oldsymbol{B}$	$oldsymbol{J}$ function of $oldsymbol{B}$	$oldsymbol{B} = abla \Big(\widetilde{\Phi}_B + \left(\mu_0 I_P / 2 \pi ight) \phi \Big)$
BC	$oldsymbol{B}\cdot\hat{oldsymbol{n}}=0$	$oldsymbol{B}\cdot\hat{oldsymbol{n}}=0$	$\hat{m{n}}\cdot abla \widetilde{\Phi}_B + \left(\mu_0 I_P/2\pi ight) \hat{m{n}}\cdot abla \phi = m{B}\cdot \hat{m{n}}$

Thank you, SULI!