Tokamaks

by Kathreen E. Thome

Presented virtually at the 2021 Intro to Fusion Energy and Plasma Physics Course

June 21, 2021

MIT for undergrad to do fusion research!

10th grade Chemistry class

10th grade

MIT for undergrad to do fusion research!

SULI at PPPL!

10th grade

MIT for undergrad to do fusion research!

UW-Madison for grad school on Pegasus

10th grade Chemistry class

MIT for undergrad to do fusion research!

UW-Madison for grad school on Pegasus

DIII-D for my postdoc

10th grade Chemistry class

MIT for undergrad to do fusion research!

SULI at PPPL!

UW-Madison for grad school on Pegasus

Deuterium-Tritium Fusion Occurs at the Lowest Temperatures

Think back to Collins Day 1

- D-T is the easiest due to its occurrence at lower temperature and is the planned scenario for a reactor
 - Reactor will want to be at ~15 keV

- Usually most tokamak and fusion experiments use deuterium gas
 - Don't need to worry about tritium, less overall radioactivity

How do we Contain Plasmas?

We want two positive particles to combine

How do we Contain Plasmas?

We want two positive particles to combine

How do we Contain Plasmas?

We want two positive particles to combine

On Earth we use

Magnets

Inertia via compression

Today is Magnetic Confinement Fusion Day!

And we're going to talk about tokamaks

- There are other types of magnetic confinement fusion devices and you will learn about them in the following lectures
 - Stellarators (Paul at 130)
 - Alternative Configurations (Woodruff at 3)

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

World War II

1940s Demonstration of nuclear fission

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

Late 1940s & early 1950s Fusion is a secret and

an international race

World War II

1940s Demonstration of nuclear fission

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

Late 1940s & early 1950s

Fusion is a secret and an international race

World War II

E=mc²

1940s ~**1950** Demonstration of nuclear fission *Tokama propose Soviet sc*

Tokamak proposed by Soviet scientists Andrei Sakharov and Igor Tamm

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

Late 1940s & early 1950s Fusion is a secret and

an international race Sp

~1951 Stellarator proposed by American scientist and future PPPL director Lyman Spitzer

World War II

E=mc²

1940s ~ Demonstration of Tc nuclear fission pr

~1950

Tokamak proposed by Soviet scientists Andrei Sakharov and Igor Tamm

1920s-1930s

Beginning of the nuclear age: Fusion and fission first theoretically proposed, realization that nuclear fusion happens in stars

Si

Late 1940s & early 1950s Fusion is a secret and

an international race Sp

~1951 Stellarator proposed by American scientist and future PPPL director Lyman Spitzer

E=mc²

1940s Demonstration of nuclear fission

~1950 Tokamak proposed by Soviet scientists Andrei Sakharov and Igor Tamm

1958

First tokamak T1 constructed in Russia

1920s-1 Beginning age: Fusic theoretico realization fusion hap	930s of the nucleo on and fission ally proposed, n that nuclear opens in stars	first Late 1940s early 1950 Fusion is a sec an internation	Late 1940s & early 1950s Fusion is a secret and an international race		~1951 1 Stellarator proposed Stellarator proposed Stellarator Proposed Stellarator Proposed Stellarator Presidential Stellarator Proposed Stellarator Presidential Stellarator Stellarat		19 Sov ns for ha erence in 1 hig rch exp is si	1968 Soviets announce they have achieved 1 keV in T3 tokamak, 10x higher than any other experiment – the world is skeptical	
	We	orld War II							
E=n	nc ²	1940s Demonstration of nuclear fission	~1950 Tokamo propose Soviet s Andrei and Igo) ed by cientists Sakharov or Tamm	1958 First tokamak constructed in	T1 n Russia Fusic thar losin enel	ly 1960s on is harden we thoug g too muc rgy	1968 British confirm 1 keV temperature on T3 using Thomson scatting tht	1

Tokamak is a Russian acronym for "toroidal chamber with magnetic coils"

тороидальная камера с магнитными катушками Toroidalnaya camera s magnitnymi katushkami

How does a Tokamak Confine Particles?

Remember day 2 Hussein's Single Particle Motion talk!

Tokamaks have both external coils to produce fields and a driven toroidal current to produce a poloidal field

Poloidal Fiel

- Originally all tokamak plasmas were circular
- Elongation increases the cross section of the plasma $k = -\frac{b}{\kappa}$
 - Area ~ pi*a*b
- More room for fusion at the same major radius
- Elongation is unstable and requires active control

a

Courtesy M. Walker, GA

Two Types of Tokamaks: Conventional Aspect Ratio and Spherical Tokamaks

- Aspect Ratio A=R/a
- Most conventional aspect ratio tokamaks A>2.5
- Spherical tokamaks aspect ratio A=1-2.5
 - A lot of conventional aspect ratio assumptions, physics is slightly different at lower aspect ratio
- NSTX-U and MAST-U biggest spherical tokamaks, also smaller ones like Pegasus!

Peng, Phys. Plasmas, 7, 1681 (2000).

Tokamaks have Magnetic Surfaces

q= 2π/i safety factor= toroidal transits/poloidal transits

Often reduce 3D toroidal coordinates (φ, θ, R) to 1 D magnetic surfaces coordinates Ψ when possible

Axisymmetric Toroidal Equilibria are Described by the "Grad Shafranov" Equation^{1,2}

Grad Shafranov: $\mathbf{J} \times \mathbf{B} = \nabla p$ $R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \Psi}{\partial R} \right) + \frac{\partial^2 \Psi}{\partial Z^2} = -\mu_0 R^2 \frac{dp}{d\Psi} - F \frac{dF}{d\Psi}$

- Provides a solution for the Flux (Ψ) as a function of space (R, Z) and Pressure (p) and current (F)
- Contours of equal flux are called "Flux Surfaces"
 - Pressure is constant on a flux surface
- Outermost flux surface is called the "Separatrix"
- We label radius by "normalized flux"
 - Core = 0, Separatrix = 1

Toroidal Current must be Sustained in a Tokamak

- Initially induce current using a central solenoid (called Ohmic heating, inductive drive)
 - Change of flux through solenoid induces a toroidal electric field
 - Cannot sustain current steady-state
 - Can be used to startup a plasma

How do you Ohmically Startup a Tokamak?

- Maximize volume of poloidal field null
- Gas puffing ('prefill')
- Reverse bias on ohmic primary
- Paschen minimum
 - Create closed flux surfaces, grow the plasma

Need Both Current Drive and Heating in a Tokamak

- Heating is required in a reactor to ~15 keV
- Non-inductive current drive required for steadystate operation
- Physics of heating and current drive is very similar
 - If there is current drive, there is also heating
 - However heating can occur by itself
- Tokamaks naturally generate toroidal current (called bootstrap current) thanks to trapped particles
 - Due to profile gradients, more trapped particles are moving in the current driving direction at any one location
 - Trapped particles cannot carry current but transfer current to passing particles via collisions

Luce et al PoP 18 030501 (2011)

Wait Can't We Just Use Bootstrap Current?

 Full current drive by bootstrap current has been demonstrated but NOT in parameter regimes suitable for fusion energy

 ITER Physics Basis: "Steady state operation of the tokamak requires that at least 20% of the plasma current is provided by an external source"

We Need More Power – Neutral Beam Injection (NBI) Big Success

 Ohmic heating not sufficient, auxiliary heating and current drive first developed around 1971

With 2.4 MW of D⁰ injection into an H⁺ plasma, we have achieved ion temperatures up to 6.6 keV recorded by an analysis of charge-exchange neutrals as shown in Fig. 1. A supportive diagnostic for this ion-temperature measurement is Doppler broadening of Fe XXIV. At this power level, ion temperature and central density $[n_e(0) = 5 \times 10^{13}$ cm⁻³], Fe XXIV is strongly heated by the beam ions and can be raised to temperatures well above the thermal H⁺ plasma. We calculate, for this case, that the temperature of Fe XXIV should exceed that of the thermal protons by 1700 eV. The

FIG. 1. Ion temperature (H^+) vs time as measured by analysis of charge-exchange neutrals and Doppler broadening of Fe XXIV for 2.4-MW D⁰ injection into a H⁺ plasma. Calculations indicate that the maximum temperature of Fe XXIV should exceed that of H⁺ by 1700 eV.

Neutral Beams are Huge!!!! Often Bigger than Tokamak

• Example: plan view of DIII-D with 4 beamlines

Advantages and Disadvantages: Neutral Beams

- Drives current in the core of burning plasmas
- Neutral beam energy must be high > 1 MeV to reach center of the plasma in a reactor, operation up to 0.5 MeV demonstrated in Japan
 - Need to demonstrate higher voltages and current densities
- Larger aperture required, removing blanket and shielding
 - Reduces tritium breeding capability and protection from neutrons
- Large addition to volume of plant exposed to tritium
- Could drive fast-ion instabilities

Waves are the Main Alternative Heating/Current Drive Method: There are Many Types!

Ion Cyclotron RF

f<200 MHz (FWCD/HHFW also ICCD) Tetrodes

Lower Hybrid RF f<0.5-10 GHz LH, whistlers/helicon Klystrons

Electron Cyclotron RF f<10-300 GHz Gyrotrons

Lower Hybrid Current Drive the Most Successful Wave Current Drive to Date

Performance

- Current record: JT-60U fully non-inductive up to 3MA for one second
- Energy record: Tore Supra 6 minutes 6 GJ

Pulse length

- TRIAM-1M at 1e18 m⁻³, 6 T, 5 hours 16 minutes
- Plan is to use negative neutral beam injection, electron cyclotron, lower hybrid and ion cyclotron heating and current drive on an upcoming demonstration tokamak

Tokamak is Only One Part of the Machine Hall!

Need: Diagnostics, Vacuum, Power Supplies, HV Power Supplies, Heating Systems, Gas Systems, Water Cooling, Computer Systems...etc. Requires a big team with many different skills (physicists, engineers, technicians, computer programmers, etc.)

A Tokamak Site is Huge. There are a Bunch of Other Rooms too!

What are Some Active Areas of Research in Tokamaks?

- Research somewhat broken up by location in plasma
 - Core plasma
 - Black line is called the separatrix as well as last closed flux surface
 - Boundary plasma inside of separatrix-called edge
 - Boundary plasma outside of separatrix-called SOL

• Many topics, some mentioned here, some described in other talks

Two General Types of Magnetic Topologies

R. A. Pitts, "Tokamak edge physics and plasma surface interactions" 2007 crppwww.epfl.ch/~pitts/pitts/pitts_varenna_27_09_2007.pdf

٠

Many Types of Divertor Topologies

Lower single null

Upper single null

- Originally magnetic confinement experiments had limiters
 - Better results with divertors!
 - Most experiments have divertors today
 - Particle control very important for performance
- Use external coils to create poloidal field nulls
 - Single Null
 - Double Null
 - More complicated: Snowflake, Super-X etc

Narrow Heat and Particle Width Can Damage Divertor Plates

- Many strategies to reduce divertor heat flux
 - Detachment-raise density
 - Expand magnetic flux using snowflake and super-X configurations
 - Add impurities to increase radiation in SOL
 - Shaping the divertor baffle
- Figuring out what materials to use for the divertor and other parts of the vessel is an active area of research

Find out more tomorrow!

Transport: Need to Confine the Heat Put into the Tokamak

- Heat you put in the plasma gets transported out!
- Study core, pedestal and SOL transport

45

- Confinement and transport are the same thing
- Fluctuations likely responsible for transport are aligned with magnetic field
- Want to minimize transport and turbulence
- Different plasma regimes are governed by different transport
- Transport of density, momentum and temperature are observed and they all depend upon each other

$$Q_{th} = \frac{P_{fus}}{P_{heat}} = \frac{P^2 V}{PV/\tau} \propto \langle Pressure \rangle I(\tau/I)$$

Energy Confinement Time

$\tau = \text{Thermal Energy} / P_{heat} \propto I \leftarrow \text{empirical}$

Transport: High Confinement (H-mode) Has Higher Plasma Pressure than Low Confinement (L-mode) Operating Regime

- Low confinement (L-mode) is the baseline tokamak operating regime
 - Linear T_e, n_e profiles
 - High levels of microturbulence
 - Not a viable regime for fusion reactors

- High confinement (H-mode) is reactor compatible
 - Significant improvement in particle and energy confinement compared to L-mode
 - Formation of edge transport barrier

Pedestal: The Tokamak "Pedestal" Can be Locally MHD Unstable ... Yielding an "Edge Localized Mode" (ELM)

Stability: Want as Much Bang for our Buck but Need Stable Plasmas

Stability: Current Limit is Set by Kink Instabilities

Stability: Disruptions are a Rapid and Complete Loss of Current and Energy

- Three threats for a tokamak-possible disaster for a reactor
 - Thermal Load: high heat flux to divertor
 - Electromagnetic forces
 - Runaway electrons

• Need to avoid, backup plan mitigate disruption

Stability: Tokamak Pressure Limits Follow Normalized Beta

Conceptually the plasma beta is as follows:

<u>plasma pressure</u> magnetic pressure

- Typical values of β are only few %
- Low beta is more MHD stable
 - ... but lower pressure (less fusion) at constant magnetic field
- Tokamak pressure often limited by long-wavelength kink modes
 - Ideal MHD often limits max β_{N} to 3.5 on a conventional tokamak, higher on spherical tokamak!
 - Techniques to go above: optimized shape, optimized current profile, optimized pressure profile, wall stabilization
- Developing accurate and quick (realtime) stability prediction models is needed

Luce et al PoP **18** 030501 (2011)

Scenario: What Scenario will a Reactor Operate in?

- Each tokamak has its own set of operating scenarios
 - On DIII-D there are at least 8
 - Each scenario helps us understand the underlying physics a bit better
 I-mode
 EPH-mode
 RMP ELM-Sup

Type I ELMs H-mode EDA H-mode

Type III ELMs H-mode

Super H-mode

QH-mode L-mode

H-mode

Scenario: Negative Triangularity Innovative Regime that might be Suitable for a Reactor

Shot = 180520

Run = EFIT02

Time = 2020 ms

1.0

- Negative triangularity predicted to not have good MHD stability in the late 80s
 - TCV and DIII-D tokamaks have recently explored it and found better than predicted stability and other characteristics
- Typically in L-mode with H-mode's good qualities
- NegD campaign summer 2022 with
 armor!
 Inner Wall Limited Diverted

(a)

53

Core-Edge Integration Crucial for a Reactor

- Competing requirements on core, pedestal and boundary plasma!
 - Need to mitigate high boundary heat flux but also maintain confinement
 - Often mitigation ruins confinement
 - One technique is a high pedestal height
 - Also need ELM control!
 - ELM control can also damage confinement
 - Sometimes not compatible with high-performance cores

There are Many Tokamaks in the U.S. that You Could Work On!

- Currently two bigger facilities: Princeton Plasma Physics Laboratory (Princeton, NJ) and DIII-D National Fusion Facility (San Diego, CA)
 - At PPPL LTX and NSTX-U
 - A few universities have tokamaks: Pegasus III (University of Wisconsin-Madison), HBT-EP (Columbia University)
 - Many universities have collaborations with PPPL and DIII-D and have on-site grad students
 - Click through the list of schools <u>here</u> and ask around

The Biggest Tokamak Ever is Being Built Right Now in France

- ITER: "the way" in Latin
 - Huge international partnership
 - Different countries are building different parts of the machine
 - First plasma in 2025!

- ITER's mission is to demonstrate fusion energy at an industrial scale
 - Q = 10, 10x power out than put in
 - 500s pulses!
 - Find out more at iter.org

The Biggest Tokamak Ever is Being Built Right Now in France

Largest scientific experiment ever built

Construction towards 1st plasma is 73% complete

It's an Exciting Time for Fusion in the U.S.!

Two new tokamaks have been proposed!

- SPARC from Commonwealth Fusion in Massachusetts, in collaboration with MIT will have 12T magnets! Magnets currently under construction
- EXCITE (EXhaust and Confinement Integration Tokamak Experiment) recommended by National Academies and Community Planning Report to close the ITER gap

Powering the Future

Fusion & Plasmas

A long-range plan to deliver fusion energy and to advance plasma science

Conclusion: Tokamaks are the Leading the Charge for Magnetic Confinement Fusion Energy

- Tokamaks have a helical magnetic field from external coils and a driven toroidal current
- There are many active areas of study in a tokamak from the core to the divertor

 It's an exciting time to be doing tokamak research with ITER coming online soon and two new tokamaks proposed in the U.S.

