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Magnetohydrodynamic (MHD) models
In context



Modelling hierarchies in plasma physics

Fluid models (moments, conservation equations)

Kinetic models (distribution functions)

Microscopic

With magnetic field

Single-particle models (particle pushing)
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Magnetohydrodynamics (MHD)

* A macroscopic description of plasmas in the continuum limit.
* A nonlinear dynamical system that is rich in spatio-temporal complexity.

* |mportant applications in the laboratory, space and astrophysics.

(Image credit: EUROfusion.)



MHD and (toroidal) magnetic confinement fusion

» MHD Is used to describe the macroscopic behaviour of plasmas.
» Magnetic confinement fusion relies on steady-state operation and confinement.

*  An important application of MHD Is to understand and avoid large-scale instabllities.

Toroidal angle (¢)

Toroidal current needed to create

. . . =P Current-driven instabilities
poloidally confining magnetic field

Vo lgnition temperature (at T = 15 keV): I
angle (0) (pTE)min ~ 8atm. s

Pressure-driven instabilities

(Figure from L.-M. Imbert-Gerard et al.,
arXiv:1908.05360 (2020).)
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An aside on the applicability of MHD

» Charged particles gyrate about magnetic field lines. If gyromotion « scale lengths of the problem,
this effect is unimportant.

Pk S
4

Particle trajectory.
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(Figure from L.-M. Imbert-Gerard et al., L .
arxiv:1908.05360 (2020).) ~>Guiding centre trajectory

* |n practice, this means MHD is generally applicable when:

Typical length scale a~1m (Minor radius of device)
Typical time scale Ta~2US (For ideal MHD)
Typical velocity vy ~ 500km/s (lon thermal speed)
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Model selection in plasma physics

- Nonlinearity and coupling across multiple spatial (10~ — 10°m) and temporal (10~1? — 102s)
scales is a characteristic feature of plasma physics.

» Scale separation is the key underpinning principle when constructing and using plasma physics
models.

»  Assumptions abound! (E.qg., the closure problem).

* |n practice, the appropriate model depends on the specifics of the problem at hand.



Electromagnetics + hydrodynamics

Magnetohydrodynamics



Macroscopic description of plasmas: Electromagnetic fields

* Inthe MHD regime, we consider a fluid in an electromagnetic field.

* The electric (E) and magnetic (B) fields are governed by Maxwell's equations:

, _ P
(Gauss ‘aW) V-E= E_ Don't say you If you haven't
0
love the anime read the manga
A 'S | VXB= - 0
(Ampere’s law) = UoJ /Z ”
| 0B
(Faraday’s law) VXE = o
V-B=20

* Here, J Is the current density, p is the density, €, Is the vacuum permittivity, u, Is the vacuum
permeability and c is the speed of light.




Macroscopic description of plasmas: Fluid conservation

By taking successive moments of the Boltzmann equation (kinetic model), we can derive

conservation eqguations for fluids.

* Since each plasma species (e.q., electrons and ions) has its own distribution function, we have

conservation equations for each species s.

Mass continuity:

ong
Py FV - (ngv,) =0

Momentum conservation:

v
Mmeng ( ats -V - VVS) =gn(E+v.xB)—-V:-P.+ R,

» But this is a complex system of equations, how can we simplify things?

n, = density

n.v,= mean flow

P. = pressure tensor
me = Mass

g; = charge

R, =collisional
momentum transfer



Macroscopic description of plasmas: Single-fluid reduction

* Inthe MHD regime, the plasma is assumed to be quasi-neutral:
n; =ne
* [he electron behaviour can be modelled by assuming m, — 0. This reduces the density to:
p = psMmshg = myn

* The (mass) continuity equation reduces to:

ap'V =0
at' (pV)—

»  Combining the momentum conservation equations for each species:

ov
P o Fv-VW | =]JxB-V-(P;+P,)

* Where ] = )., g.n.v. is the current density and v = v; is the fluid velocity.



Macroscopic description of plasmas: Ohm’s law

* The momentum conservation equation for electrons with m, — 0 gives us Ohm’s law:
gon.(E+v,xB)—-V-P,+R, =0
* Which is usually written as:

JXxB—-V-P, +R,
en

E+vXB-=

* The RHS of Ohm's law contains additional physics that appear in various extensions of the MHD model.



Macroscopic description of plasmas: Energy conservation

* The final component of the MHD model is the pressure.

* From the Boltzmann equation (kinetic model), each species has an energy conservation
eqguation:

3N,
2

dT,
Py Fve - VIL | +P:Vve+V-q. = 0

S

* Where Ty Is the temperature, g Is the heat flux and Q. is collisional heating.
» \We can define a total temperature and total pressure:

p=p; +pe =2nT
T=(T;+T,)/2

* Now we need to couple the ion and electron energy equations.



Macroscopic description of plasmas: Pressure

» To couple the ion and electron energy equations, we make a series of assumptions which
Impose quantitative conditions on the formal validity of the MHD model.

» See Ch. 2.3.5 of Freidberg’s Ideal MHD for detalls.

* Assuming that the energy equilibration time is small compared to the time scale of interest:

TizTe:T
Di = Pe =p/2

» The energy equation reduces to:

d 2
— (%) = — V- [(reyi + 1) V) T

* Wherey = 5/3 and k; is the parallel thermal conductivity coefficient.



Combining electromagnetic fields and conservation equations

» The basic (non-ideal) single-fluid MHD model.:

Maxwell's equations: VXB =)
VXE = o
ot
V-B=0
Fluid conservation: P LV (pv) = 0
ot
ov
P\ 3; Fv-VW ]| =]xB—-V-(P; +P,)
d(p 2
It ( py) — 3pY V) - LGy + 1) V) T
Ohm’s law: E+v><B=] e T Re

en



Combining electromagnetic fields and conservation equations

» The basic (non-ideal) single-fluid MHD model.:
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0t
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Fluid conservation: &P o (V) = 0 complicated system of
ot eauations.
ov
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d(p 2
It ( py) = 37 Vi - LCreyi + 1)V T
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en
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Combining electromagnetic fields and conservation equations

» The basic (non-ideal) single-fluid MHD model.:

Maxwell's equations: VXB =)
VXE= OB
- ot
v-B=0 This is still a pretty
Fluid conservation: P v. (pv) = 0 complicated system of
ot eauations.

ov
p(at Iv-Vv>=]><B—V-(Pi+Pe) What can we do with it?

HAE 9000

. (p) 29, [y + K1)V,
— - Ku: K
dt\p¥) 3pv "' e e Give it to a computer.
Ohm’s law: E+v><B=] e e




Example: Extended-MHD modelling of fusion plasmas

» State-of-the-art codes are used to perform high-fidelity simulations of fusion plasmas.
» Examples include M3D-C1 (PPPL), NIMROD (U Wisc.-Madison) and JOREK (IPP, Garching).
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https://aip.scitation.org/doi/10.1063/1.5016348

Reduction to the visco-resistive MHD
model



Further reductions to the MHD model

* Further simplifications to the non-ideal single-fluid MHD model are possible:

Maxwell's equations: VXB =)
VXE = o8
-0t
V-B=20
Fluid conservation: P LV (pv) = 0
ot
ov
P\ 5 Fv-Vv ]| =]JxB—-V-(P; +P,)
d (7 , \ By making additional
dt( )/) — ﬂvﬂ : [(Klli -+ K”e)V”T] R QSS“W\P“OV\S, these
P P _— terms can be simplified.
Ohm’s law: _IXB-V-P. +R,
E+vXB=

en



Simplifying Ohm’s law

o Recall the non-ideal Ohm’s law:

JXxB—-V-P,+R,
en

E+vXB=

* The electron pressure tensor contains an isotropic (scalar) and anisotropic (tensor) term:
P, =p. 1+ 11,

» The effect of viscosity (I1,) is small compared to electron diamagnetic drift (Vp,,) which is comparable to
the Hall effect (J x B).

* The dominant contribution to R, is electrical resistivity (n):

R

e
peetiad/]

* [fthe length scale of interest is large compared to the ion gyroradius, then Vp,, /en is small compared to
v X B which reduces Ohm'’s law to:

E+vXB=rn]



Simplifying momentum conservation (with viscosity)

» Recall the momentum equation:

ot

* Like the electron pressure tensor, we can decompose P = P; + P, Into an isotropic and
anisotropic component:

ov
p( Iv-Vv)zle—V-P

P=(p; +p)l+1I; + I,
* Since p, = p; and I1,, is negligible by assumption:

P =pl+ Hl ‘Contains viscosity terms

 WhenV -v = 0, we can write;

P =pl—u(Vv+ (W)")  Rate of deformation tensor

A simplified model for momentum conservation with viscous effects (u):

v ,
P Py Fv-Vv | =] XB—Vp+ uvev



Equation of state: Simplifying the energy equation

» Under the preceding assumptions, the energy conservation equation reduces to:

dp_
dt\p¥)

* Which is referred to as the ideal MIHD equation of state.

» Effects due to resistivity (n) can be modelled by modifying the equation of state:

dp
ot

Fv-Vp+ypV-v=(y—Dnj*+5,

» Toallow static (v = 0) equilibria (9; — 0), a sink, S, Is introduced.



Visco-resistive MHD

* The single-fluid MHD model with resistivity and viscosity:

Maxwell's equations: VXB =]
VXE = o8
0t
V-B=0
Fluid conservation: dp
FV-(pv) =0
ot
ov
’O(at | v-Vv) =] x B —Vp + uvév
dp ,
o Fv-Vp+ypV-v=(y—1Dn/*+5,

Ohm's law: E+vxB=1]



The MHD induction equation



Deriving the induction equation

»  Combining Ohm’s law;

E+vXxXB=1]

» With Faraday's law:
VXE = o8
0t

* Eliminates E to yield the induction equation:

0B
 —Vx (vXB)+-VB
ot Ho

» Which is an evolution equation for the magnetic field.



The induction equation explained

* The Induction equation can be expanded as:

Advection of v by B.
0B — N n
- (v-V)B= (B-V)v—B(V V) +—V?B
ot Ho
g ),
~
The convective
derivative:
D 0 | .
Dt ot "

Includes variation of B in time and
advection of B by V.

* The magnetic field (B) and fluid (v) are closely coupled.



The ideal MHD limit



The ideal MHD limit

* Whenn = 0, the plasma Is said to be ideal.

 [he Induction equation reduces to:

0B n
F(v-V)B=(B:-V)v—B(V-vV) I/B
ot 4

* The magnetic field (B) and fluid (v) are exactly coupled.

* The magnetic field must move with the fluid. This is known as the frozen-in flux condition.

— ]



Implications of the frozen-in flux condition

» When the magnetic field is frozen-in, the connectivity of magnetic field lines cannot change.

(Adapted from Fig. 10 Wiegelmann & Sakural,

Living Reviews in Solar Physics 9.1 (2012))

* Inideal MHD, the topology of magnetic field lines is preserved exactly:
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* Depending on the time scale of the problem of interest, n = 0 may not be a good approximation.


https://link.springer.com/article/10.12942/lrsp-2012-5

Magnetic reconnection

* Whenn # 0, the magnetic field can decouple from the fluid:

- (v-V)B = (B-V)v—B(V V) +-L V2B
ot Ho

* This allows local changes in the connectivity of magnetic field lines via magnetic reconnection,
leading to global changes in topology:
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Example: Magnetic reconnection in the Earth’s magnetosphere

The interaction between the solar wind and Earth’s
magnetic field is important For space weather, which con
directly impact critical infrastructure on Earth.

Magnetic reconnection processes play an important role
in this environment and is studied with numerical
simulations as well as data From space missions, €.9., the
Magnetospheric Multiscale Mission.

Magnetosheath

": adiation Belts— {
: \ Tail Lobe (north)
: i —
i

Pl &ﬂ{ﬂl;: = > /N

Tail Lobe (south)

*J LowLatitude
Boundary Layer
"\

Fig. 1 A cartoon of the Earth’s magnetosphere

Figures taken from J. P. Eastwood et al., Space Science Reviews 188.1 (2015).
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Fig. 8 Cartoon showing the progression of the Dungey cycle
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https://link.springer.com/article/10.1007%252Fs11214-014-0050-x

Example: Sawtooth oscillations in tokamak plasmas

Under certain conditions, tokamak plasmas have been observed to exhibit periodic
crashes in the electron temperature.

A leading model of the sawtooth phenomenon involves the fFormation of a Llarge
magnetic island, via reconnection, which displaces the magnetic axis.

10.0 10.1 10.2 10.3 10.4 10.5
Time (t)

Sawtooth crashes are observed on pretty much all tokamaks and continue to be the
subject of robust debate and discussion.

Figure 1. An example of the time evolution of (a) the central

electron temperature and (b) corresponding g, in a sawtoothing
discharge [shot #18186].

(Top) Figure taken from Y. B.
Nam et al., Nuclear Fusion 58.6
(2018) [K-STAR].
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R [m]

R [m]

28 3 32 34 36
R [m]

28 3 32 3.4 36
R [m]

28 3 32 3.4 36
R [m]

. i
0 _i
-0.1 _ f‘*
o \ (Left) Figure taken from |. Krebs
0.4 et al., Physics of Plasmas 24.10
el N = B I (2017) [M3D-C1].
-0.7 | t =. 16?809 TA | { = 165200 TA 17T . t =. 167.600. TA . 1T . { =. 168.800. T’A .

FIG. 7. Poincar¢ plots showing the magnetic field line structure in the central plasma region at different points in time during a sawtooth cycle. As described in
Kadomtsev’s model, the (m = 1,n = 1) magnetic island grows until it has entirely replaced the original plasma core. (Case “m0”).


https://iopscience.iop.org/article/10.1088/1741-4326/aab972/meta
https://aip.scitation.org/doi/full/10.1063/1.4990704

A remark on the ideal MHD “limit”

» Whenn = 0, the plasma is said to be ideal. Topological changes of the magnetic field are
prohibited.

* Whenn # 0, the magnetic field can undergo reconnection locally, to change the global
structure of B.

» Conductivity is finite in any real system, so 7 # 0 in fusion plasmas.

» Proceed with caution when interpreting the Iimitn — 0.

* However, the effect of n Is local so well-established local techniques (e.g., boundary layer
theory) can be used to handle small n.




Static ideal MHD equilibria



Reminder: the Ideal MHD model
* The single-fluid ideal MHD model.:

Maxwell's equations: VXB =]
V-B=0
Fluid conservation: dp
Py FV-(pv) =0

av' Vv|=]XB—-V

dp
ot

Fv-Vp+ypV-v=20

. . 0B
Induction equation: = V X (v X B)



Reminder: the Ideal MHD model
* The single-fluid ideal MHD model.

* Let's now consider the static (v = 0) equiliorium (9, — 0) limit:

Maxwell's equations: VXB =]
V-B=0
Fluid conservation: dp
Py FV-(pv) =0

av' Vv|=]XB—-V

dp
ot

Fv-Vp+ypV-v=20

. . 0B
Induction equation: = V X (v X B)



The ideal MHD equilibrium model

 The ideal MHD equilibrium model describes static (v = 0) equilibria (d; = 0) whenn = 0:

Maxwell's equations: VXB =]
V-B=0
MHD force balance:  JxB—Vp =0

» Steady-state operation is important for magnetic confinement fusion.

 |Inthe MHD regime, we are often interested in states where the plasma is not changing
significantly on the time scale of interest.

* The ideal MHD equilibrium model can be a good approximation under these conditions.



Aside: The force-free MHD equilibrium model

» When the Lorentz force (J x B) is negligible, the ideal MHD equilibrium model can be further simplified:

(VXB)XxB=0
V-B=20

* Which gives the nonlinear force-free equilibrium model:

VXB=a(Xx)B
B-Va(x) =0

* And the linear force-free equilibrium model if a Is constant.

» Force-free models are used in e.q., solar physics and some fusion applications.



Example: Force-free solar magnetic fields
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https://link.springer.com/article/10.12942/lrsp-2012-5

Aside: The ideal MHD equilibrium model via energy minimisation

* A common construct for deriving the ideal MH

Wpotential

D force balance is to minimise potential energy:

BZ
zf(p \I)dv
a\Yy =1 2y

» Using calculus of variations, Wy stentia: 1S Stationary when:

J X

B—Vp = 6 MHD force balance eauation

* Note that equilibrium does not necessarily iImply energy minimum.

» Energy minimisation is the theoretical basis for several 3D MHD equiliorium codes (e.g., VMEC, SPEC).

* Energy ‘minimisation’ also depends critically o
wit

h respect to). It gives the same equation, b

N the choice of variations (i.e., what you are mini
Ut the physical interpretation of the solution is nuar

MISI

Ng
ced.



Static ideal MHD equilibrium: 1D

* |ncylindrical coordinates (r, 8, z) 1D MHD equilibria satisty:

d (M B5() +B§<r>) B5™) _ ~
dr 21 HoT ‘\ /

Plasma Magnetic Magnetic

pressure pressure tension ,._, /

 Cylindrical geometry, sometimes referred to as a screw pinch.

ral screw pinch geometry.

° Ana\ytica\ly tractable so Common\y used. Figures from J. P. Freidberg, Ideal MHD, CUP (2014).

» Can model tokamaks in the large aspect ratio limit, but misses effects associated with toroidal curvature
(e.q., poloidal mode coupling).

Pressure-driven: Unstable Current-driven:
Interchange modes Pasma vacuum Kink modes

Some instabilities can be studied

Plasma —
with the cylindrical model -) 5 S )




Static ideal MHD equilibrium: 2D

* 2D axisymmetric (d4 — 0) equilibria are described by solutions of the Grad-Shafranov equation:

20 (LOWRD\  PYRZD __ ,dp() _1dFE):
daR\R™ or )" azz ~ M T4y T2 ay
_/

"2
This operator is sometimes
written as:
— A* (R, Z)

* The free functions, p(y) and F(y) = RB, are flux
functions as they depend only on 1 and follow from:

m e Figure from:
[ '/—*\I _r J.P.Freidberg,

— R, olodial  ldeal MHD, CUP
B- VP = () Rp —b\’\:‘:l)ui .,dfpl (2014).

J-Vp=20

Figure 6.2 Washer-shaped surface through which the poloidal flux y, passes.




Example: Axisymmetric tokamak equilibrium
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Figure 6.18 Numerically computed equilibrium for the DIII-D tokamak at General Figure 6.24 Exact Solov’ev equilibrium for MAST Figure 6.29 Exact single null divertor Solov’ev equilibrium for NSTX.

Atomics. Shown are flux surface plots corresponding to auxiliary heated high /5 tokamak
operation. From DIII-D Team, 1998. Reproduced with permission from Elsevier.

Figures from J. P. Freidberg, Ideal MHD, CUP (2014).



Static ideal MHD equilibrium: 3D

* Finding solutions for MHD equilibria when there is no continuous symmetry in the toroidal
direction is an open topic of research.

* Independent of the MHD model, the structure of B is closely linked to Hamiltonian mechanics.

* When d¢p » 0, new structures for B are possible. These are not guaranteed to be consistent
with assumptions of the ideal MHD model.

* Frontier challenges in 3D MHD are closely linked to dynamical systems theory.

» Stellarators are an example of non-axisymmetric devices.



Example: Stellarator equilibria

NCSX: has a discrete Wendelstein 7-X: has a
three-fFold toroidal discrete Five-fold

toroidal symmetry.

Figures from L.-M. Imbert-Gerard et al., arXiv:1908.05360 (2020).



https://arxiv.org/abs/1908.05360

Linear ideal MHD stability



What is stability?

 Recall that steady-state operation is important for magnetic confinement fusion.

* |Inthe MHD regime, we are often interested in states where the plasma is not changing significantly on
the time scale of interest.

»  Once we have found an equilibrium, we usually want to know whether it is stable or unstable.

 Stability Is a concept from dynamical systems theory that tells us what happens to a state when
it IS perturbed.

* An unstable state moves far away from equilibrium when perturbed. A stable state remains close.

* There are many different types of stability:

o/

: A\

(Figure adapted from J. P. Freidberg, Ideal MHD, CUP (2014).)



Linear ideal MHD stability

 For steady-state operation, linearly stable equilibria are typically desirable:

V4 X

* Analysing linear Is stability Is comparatively simple since it is local to the equilibrium point.

» Using a perturbation series to expand the ideal MHD evolution equations and retaining only first-order
(inear) terms produces the linearised MHD equations.

 Linear ideal MHD stability reduces to solving a linear eigenvalue problem.



Complementary approaches to linear MHD stability

* The eigenvalue problem for linear ideal MHD stability can be solved numerically using a wide variety of
eigenvalue codes.

* The linearised MHD evolution equations can also be solved directly.

» Examining special cases using analytic techniques (e.q., perturbation theory, boundary layer theory,
asymptotics) produces simple criteria which can be used as metrics for device design and scenario
development.




MHD in practice



Practical MHD analysis for fusion plasmas

* There are three components to MHD analysis for fusion plasmas:

o Linear Nonlinear
Equilibrium . .
. stability dynamical
calculations . . .
analysis simulations

>
Cost, Fidelity

» They are complementary analyses which, together, form the workflow for a wide range of applications:

v" Physics studies and simulations (€.g., understanding experimental observations)

v" Scenario development and studies (e.g., ITER)

v" Device design and optimisation (e.g., fusion pilot plant concepts, next-generation stellarators)



Thank you!

Email: awright@pppl.gov

. @mini _space dino
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