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• A macroscopic description of plasmas in the continuum limit.

• A nonlinear dynamical system that is rich in spatio-temporal complexity.

• Important applications in the laboratory, space and astrophysics.

(Image credit: EUROfusion.)



• MHD is used to describe the macroscopic behaviour of plasmas.

• Magnetic confinement fusion relies on steady-state operation and confinement.

• An important application of MHD is to understand and avoid large-scale instabilities.

Ignition temperature (at 𝑇𝑇 = 15𝑘𝑘𝑘𝑘𝑘𝑘): 
𝑝𝑝𝜏𝜏𝐸𝐸 𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8𝑎𝑎𝑎𝑎𝑎𝑎.𝑠𝑠

Current-driven instabilities
Toroidal current needed to create 
poloidally confining magnetic field

Pressure-driven instabilities
(Figure from L.-M. Imbert-Gerard et al., 
arXiv:1908.05360 (2020).)

https://arxiv.org/abs/1908.05360
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“Ideal MHD”

• J. P. Freidberg, Cambridge University Press (2014).

• Accessible and comprehensive introduction to ideal MHD for fusion.

• Covers the ideal MHD model, equilibrium and linear stability.

“An Introduction to Stellarators: From magnetic fields to symmetries and 
optimization”

• L.-M. Imbert-Gerard, E. J. Paul and A. M. Wright (2020+).

• https://arxiv.org/abs/1908.05360

• A self-contained introduction covering the basic theoretical building 
blocks for modelling 3D magnetic fields, with applications to fusion 
device optimization and design. 

• No physics background assumed.

• Coming soon(-ish) in book form.

https://arxiv.org/abs/1908.05360


• In practice, this means MHD is generally applicable when: 

Typical length scale 𝑎𝑎 ∼ 1𝑚𝑚 (Minor radius of device)
Typical time scale 𝜏𝜏𝐴𝐴~2𝜇𝜇𝜇𝜇 (For ideal MHD)

Typical velocity 𝑣𝑣𝑇𝑇 ∼ 500𝑘𝑘𝑘𝑘/𝑠𝑠 (Ion thermal speed)

• Charged particles gyrate about magnetic field lines. If gyromotion ≪ scale lengths of the problem, 
this effect is unimportant.

Guiding centre trajectory

Particle trajectory

(Figure from L.-M. Imbert-Gerard et al., 
arXiv:1908.05360 (2020).)

https://arxiv.org/abs/1908.05360


• Nonlinearity and coupling across multiple spatial (10−5 − 103𝑚𝑚) and temporal (10−12 − 102𝑠𝑠)
scales is a characteristic feature of plasma physics.

• Scale separation is the key underpinning principle when constructing and using plasma physics 
models.

• Assumptions abound! (E.g., the closure problem).

• In practice, the appropriate model depends on the specifics of the problem at hand.





• In the MHD regime, we consider a fluid in an electromagnetic field.

• The electric (𝐄𝐄) and magnetic (𝐁𝐁) fields are governed by Maxwell’s equations: 

∇ ⋅ 𝐄𝐄 =
𝜌𝜌
𝜖𝜖0

∇×𝐁𝐁 = 𝜇𝜇0𝐉𝐉+
1
𝑐𝑐2
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

∇× 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

∇ ⋅ 𝐁𝐁 = 0

(Gauss’ law)

(Ampere’s law)

(Faraday’s law)

• Here, 𝐉𝐉 is the current density, 𝜌𝜌 is the density, 𝜖𝜖0 is the vacuum permittivity, 𝜇𝜇0 is the vacuum 
permeability and 𝑐𝑐 is the speed of light.



• By taking successive moments of the Boltzmann equation (kinetic model), we can derive 
conservation equations for fluids.

• Since each plasma species (e.g., electrons and ions) has its own distribution function, we have 
conservation equations for each species 𝑠𝑠.

𝜕𝜕𝑛𝑛𝑠𝑠
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝑛𝑛𝑠𝑠𝐯𝐯𝑠𝑠) = 0

Mass continuity:

Momentum conservation:

𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠
𝜕𝜕𝐯𝐯𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝐯𝐯𝑠𝑠 ⋅ ∇𝐯𝐯𝑠𝑠 = 𝑞𝑞𝑠𝑠𝑛𝑛𝑠𝑠 𝐄𝐄+ 𝐯𝐯𝑠𝑠 ×𝐁𝐁 −∇ ⋅ 𝐏𝐏𝑠𝑠 +𝐑𝐑𝑠𝑠

𝑛𝑛𝑠𝑠 = density
𝑛𝑛𝑠𝑠𝐯𝐯𝑠𝑠= mean flow
𝐏𝐏𝑠𝑠 = pressure tensor
𝑚𝑚𝑠𝑠 = mass
𝑞𝑞𝑠𝑠 = charge
𝐑𝐑𝑠𝑠 = collisional 
momentum transfer

• But this is a complex system of equations, how can we simplify things?



• In the MHD regime, the plasma is assumed to be quasi-neutral:

𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑒𝑒

• Combining the momentum conservation equations for each species:

• The electron behaviour can be modelled by assuming 𝑚𝑚𝑒𝑒 → 0. This reduces the density to:

𝜌𝜌 ≡ ∑𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠 = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖

• The (mass) continuity equation reduces to:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝐯𝐯) = 0

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇ ⋅ (𝐏𝐏𝑖𝑖 + 𝐏𝐏𝑒𝑒)

• Where 𝐉𝐉 = ∑𝑠𝑠𝑞𝑞𝑠𝑠𝑛𝑛𝑠𝑠𝐯𝐯𝑠𝑠 is the current density and 𝐯𝐯 = 𝐯𝐯𝑖𝑖 is the fluid velocity. 



• The momentum conservation equation for electrons with 𝑚𝑚𝑒𝑒 → 0 gives us Ohm’s law:

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 𝐄𝐄+ 𝐯𝐯𝑒𝑒 ×𝐁𝐁 −∇ ⋅ 𝐏𝐏𝑒𝑒 +𝐑𝐑𝑒𝑒 = 0

• Which is usually written as:

𝐄𝐄+ 𝐯𝐯×𝐁𝐁 =
𝐉𝐉×𝐁𝐁−∇ ⋅ 𝐏𝐏𝑒𝑒 +𝐑𝐑𝑒𝑒

𝑒𝑒𝑒𝑒

• The RHS of Ohm’s law contains additional physics that appear in various extensions of the MHD model.



• The final component of the MHD model is the pressure.

• From the Boltzmann equation (kinetic model), each species has an energy conservation 
equation:

3𝑛𝑛𝑠𝑠
2

𝜕𝜕𝑇𝑇𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝐯𝐯𝑠𝑠 ⋅ ∇𝑇𝑇𝑠𝑠
𝑠𝑠

+ 𝐏𝐏𝑠𝑠:∇𝐯𝐯𝑠𝑠 + ∇ ⋅ 𝐪𝐪𝑠𝑠 = 𝑄𝑄𝑠𝑠

• Where 𝑇𝑇𝑠𝑠 is the temperature, 𝐪𝐪𝑠𝑠 is the heat flux and 𝑄𝑄𝑠𝑠 is collisional heating.

• We can define a total temperature and total pressure:

𝑝𝑝 = 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑒𝑒 = 2𝑛𝑛𝑛𝑛

𝑇𝑇 = (𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑒𝑒)/2

• Now we need to couple the ion and electron energy equations.



• To couple the ion and electron energy equations, we make a series of assumptions which 
impose quantitative conditions on the formal validity of the MHD model.

• The energy equation reduces to:

• Where 𝛾𝛾 = 5/3 and 𝜅𝜅∥ is the parallel thermal conductivity coefficient.

• See Ch. 2.3.5 of Freidberg’s Ideal MHD for details.

• Assuming that the energy equilibration time is small compared to the time scale of interest:

𝑇𝑇𝑖𝑖 ≈ 𝑇𝑇𝑒𝑒 = 𝑇𝑇
𝑝𝑝𝑖𝑖 ≈ 𝑝𝑝𝑒𝑒 = 𝑝𝑝/2

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝
𝜌𝜌𝛾𝛾

=
2

3𝜌𝜌𝛾𝛾
∇∥ ⋅ 𝜅𝜅∥𝑖𝑖 + 𝜅𝜅∥𝑒𝑒 ∇∥𝑇𝑇
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𝜌𝜌
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𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝
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=
2
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𝑒𝑒𝑒𝑒

• The basic (non-ideal) single-fluid MHD model:

Maxwell’s equations:

Fluid conservation:

Ohm’s law:
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Fluid conservation:

Ohm’s law:

This is still a pretty 

complicated system of 

equations.
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Maxwell’s equations:

Fluid conservation:

Ohm’s law:

This is still a pretty 

complicated system of 

equations.

What can we do with it?

Give it to a computer.



• State-of-the-art codes are used to perform high-fidelity simulations of fusion plasmas.

• Examples include M3D-C1 (PPPL), NIMROD (U Wisc.-Madison) and JOREK (IPP, Garching).

Vertical displacement events happen 

when vertical control of a tokamak 

plasma is lost. The plasma rapidly moves 

upward or downward into the inner walls 

of the confinement vessel, leading to a 

disruption. VDEs can also cause large 

heat loads and electromagnetic stresses 

on the vessel.

Figures taken from D. Pfefferlé et al., Physics of Plasmas 25, 056106 (2018) [M3D-C1].

https://aip.scitation.org/doi/10.1063/1.5016348
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𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝
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2
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𝑒𝑒𝑒𝑒

• Further simplifications to the non-ideal single-fluid MHD model are possible:

Maxwell’s equations:

Fluid conservation:

Ohm’s law:

By making additional 

assumptions, these 

terms can be simplified.



• Recall the non-ideal Ohm’s law:

• The electron pressure tensor contains an isotropic (scalar) and anisotropic (tensor) term:

𝐄𝐄+ 𝐯𝐯×𝐁𝐁 =
𝐉𝐉×𝐁𝐁−∇ ⋅ 𝐏𝐏𝑒𝑒 +𝐑𝐑𝑒𝑒

𝑒𝑒𝑒𝑒

• If the length scale of interest is large compared to the ion gyroradius, then ∇𝑝𝑝𝑒𝑒/𝑒𝑒𝑒𝑒 is small compared to 
𝐯𝐯×𝐁𝐁which reduces Ohm’s law to:

𝐏𝐏𝑒𝑒 = 𝑝𝑝𝑒𝑒𝐈𝐈+𝚷𝚷𝑒𝑒

• The effect of viscosity (𝚷𝚷𝑒𝑒) is small compared to electron diamagnetic drift (∇𝑝𝑝𝑒𝑒) which is comparable to 
the Hall effect (𝐉𝐉×𝐁𝐁).

• The dominant contribution to 𝐑𝐑𝑒𝑒 is electrical resistivity (𝜂𝜂):

𝐑𝐑𝑒𝑒
𝑒𝑒𝑒𝑒

∼ 𝜂𝜂𝐉𝐉

𝐄𝐄+ 𝐯𝐯×𝐁𝐁 = 𝜂𝜂𝐉𝐉



• Recall the momentum equation:

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇ ⋅ 𝐏𝐏

• Like the electron pressure tensor, we can decompose 𝐏𝐏 = 𝐏𝐏𝑖𝑖 + 𝐏𝐏𝑒𝑒 into an isotropic and 
anisotropic component:

𝐏𝐏 = 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑒𝑒 𝐈𝐈+𝚷𝚷𝑖𝑖 +𝚷𝚷𝑒𝑒
• Since 𝑝𝑝𝑒𝑒 ≈ 𝑝𝑝𝑖𝑖 and 𝚷𝚷𝑒𝑒 is negligible by assumption:

𝐏𝐏 = 𝑝𝑝𝐈𝐈+𝚷𝚷𝑖𝑖
• When ∇ ⋅ 𝐯𝐯 ≈ 0, we can write:

Contains viscosity terms

𝐏𝐏 = 𝑝𝑝𝐈𝐈 − 𝜇𝜇 ∇𝐯𝐯+ ∇𝐯𝐯 𝑇𝑇 ∝ Rate of deformation tensor

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇𝑝𝑝+ 𝜇𝜇∇2𝐯𝐯

• A simplified model for momentum conservation with viscous effects (𝜇𝜇):



• Under the preceding assumptions, the energy conservation equation reduces to:

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝
𝜌𝜌𝛾𝛾

= 0

• Which is referred to as the ideal MHD equation of state.

• Effects due to resistivity (𝜂𝜂) can be modelled by modifying the equation of state:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝑝𝑝+ 𝛾𝛾𝛾𝛾∇ ⋅ 𝐯𝐯 = 𝛾𝛾 − 1 𝜂𝜂𝐽𝐽2 + 𝑆𝑆𝑝𝑝

• To allow static (𝐯𝐯 = 0) equilibria (𝜕𝜕𝑡𝑡 → 0), a sink, 𝑆𝑆𝑝𝑝, is introduced.



∇×𝐁𝐁 = 𝜇𝜇0𝐉𝐉

∇× 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

∇ ⋅ 𝐁𝐁 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝐯𝐯) = 0

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇𝑝𝑝+ 𝜇𝜇∇2𝐯𝐯

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝑝𝑝+ 𝛾𝛾𝛾𝛾∇ ⋅ 𝐯𝐯 = 𝛾𝛾 − 1 𝜂𝜂𝐽𝐽2 + 𝑆𝑆𝑝𝑝

𝐄𝐄+ 𝐯𝐯×𝐁𝐁 = 𝜂𝜂𝐉𝐉

• The single-fluid MHD model with resistivity and viscosity:

Maxwell’s equations:

Fluid conservation:

Ohm’s law:





𝐄𝐄+ 𝐯𝐯×𝐁𝐁 = 𝜂𝜂𝐉𝐉

• Combining Ohm’s law:

• With Faraday’s law:

• Eliminates 𝐄𝐄 to yield the induction equation: 

∇× 𝐄𝐄 = −
𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

= ∇× 𝐯𝐯×𝐁𝐁 +
𝜂𝜂
𝜇𝜇0
∇2𝐁𝐁

• Which is an evolution equation for the magnetic field.



• The induction equation can be expanded as:

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇ 𝐁𝐁 = 𝐁𝐁 ⋅ ∇ 𝐯𝐯−𝐁𝐁 ∇ ⋅ 𝐯𝐯 +
𝜂𝜂
𝜇𝜇0
∇2𝐁𝐁

The convective 

derivative:

𝐷𝐷
𝐷𝐷𝐷𝐷

≡
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇

Includes variation of 𝐁𝐁 in time and 

advection of 𝐁𝐁 by 𝐯𝐯.

Advection of 𝐯𝐯 by 𝐁𝐁.

• The magnetic field (𝐁𝐁) and fluid (𝐯𝐯) are closely coupled.





• When 𝜂𝜂 = 0, the plasma is said to be ideal.

• The magnetic field (𝐁𝐁) and fluid (𝐯𝐯) are exactly coupled.

• The induction equation reduces to:

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇ 𝐁𝐁 = 𝐁𝐁 ⋅ ∇ 𝐯𝐯−𝐁𝐁 ∇ ⋅ 𝐯𝐯 +
𝜂𝜂
𝜇𝜇0
∇2𝐁𝐁

• The magnetic field must move with the fluid. This is known as the frozen-in flux condition.



• When the magnetic field is frozen-in, the connectivity of magnetic field lines cannot change.

• In ideal MHD, the topology of magnetic field lines is preserved exactly:

(Adapted from Fig. 10 Wiegelmann & Sakurai, 
Living Reviews in Solar Physics 9.1 (2012))

• Depending on the time scale of the problem of interest, 𝜂𝜂 = 0 may not be a good approximation.

https://link.springer.com/article/10.12942/lrsp-2012-5


• When 𝜂𝜂 ≠ 0, the magnetic field can decouple from the fluid:

• This allows local changes in the connectivity of magnetic field lines via magnetic reconnection, 
leading to global changes in topology:

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇ 𝐁𝐁 = 𝐁𝐁 ⋅ ∇ 𝐯𝐯−𝐁𝐁 ∇ ⋅ 𝐯𝐯 +
𝜂𝜂
𝜇𝜇0
∇2𝐁𝐁

When 𝜂𝜂 ≠ 0, 

magnetic islands 

can form.



The interaction between the solar wind and Earth’s 
magnetic field is important for space weather, which can 

directly impact critical infrastructure on Earth. 

Magnetic reconnection processes play an important role 

in this environment and is studied with numerical 

simulations as well as data from space missions, e.g., the 

Magnetospheric Multiscale Mission.

Figures taken from J. P. Eastwood et al., Space Science Reviews 188.1 (2015).

https://link.springer.com/article/10.1007%252Fs11214-014-0050-x


Under certain conditions, tokamak plasmas have been observed to exhibit periodic 

crashes in the electron temperature.

A leading model of the sawtooth phenomenon involves the formation of a large 

magnetic island, via reconnection, which displaces the magnetic axis. 

Sawtooth crashes are observed on pretty much all tokamaks and continue to be the 

subject of robust debate and discussion.

(Top) Figure taken from Y. B. 
Nam et al., Nuclear Fusion 58.6 
(2018) [K-STAR].

(Left) Figure taken from I. Krebs 
et al., Physics of Plasmas 24.10 
(2017) [M3D-C1].

https://iopscience.iop.org/article/10.1088/1741-4326/aab972/meta
https://aip.scitation.org/doi/full/10.1063/1.4990704


• When 𝜂𝜂 = 0, the plasma is said to be ideal. Topological changes of the magnetic field are 
prohibited.

• When 𝜂𝜂 ≠ 0, the magnetic field can undergo reconnection locally, to change the global 
structure of 𝐁𝐁.

• Conductivity is finite in any real system, so 𝜂𝜂 ≠ 0 in fusion plasmas.

• Proceed with caution when interpreting the limit 𝜂𝜂 → 0.

• However, the effect of 𝜂𝜂 is local so well-established local techniques (e.g., boundary layer 
theory) can be used to handle small 𝜂𝜂.





• The single-fluid ideal MHD model:

∇×𝐁𝐁 = 𝜇𝜇0𝐉𝐉

∇ ⋅ 𝐁𝐁 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝐯𝐯) = 0

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝑝𝑝+ 𝛾𝛾𝛾𝛾∇ ⋅ 𝐯𝐯 = 0

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

= ∇× 𝐯𝐯×𝐁𝐁

Maxwell’s equations:

Fluid conservation:

Induction equation:



• The single-fluid ideal MHD model.

∇×𝐁𝐁 = 𝜇𝜇0𝐉𝐉

∇ ⋅ 𝐁𝐁 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝐯𝐯) = 0

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝐯𝐯 = 𝐉𝐉×𝐁𝐁−∇𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ⋅ ∇𝑝𝑝+ 𝛾𝛾𝛾𝛾∇ ⋅ 𝐯𝐯 = 0

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕

= ∇× 𝐯𝐯×𝐁𝐁

Maxwell’s equations:

Fluid conservation:

Induction equation:

• Let’s now consider the static (𝐯𝐯 = 0) equilibrium (𝜕𝜕𝑡𝑡 → 0) limit:



• The ideal MHD equilibrium model describes static (𝐯𝐯 = 0) equilibria (𝜕𝜕𝑡𝑡 → 0) when 𝜂𝜂 = 0:

∇×𝐁𝐁 = 𝜇𝜇0𝐉𝐉

∇ ⋅ 𝐁𝐁 = 0

𝐉𝐉×𝐁𝐁−∇𝑝𝑝 = 0

Maxwell’s equations:

MHD force balance:

• Steady-state operation is important for magnetic confinement fusion.

• In the MHD regime, we are often interested in states where the plasma is not changing 
significantly on the time scale of interest. 

• The ideal MHD equilibrium model can be a good approximation under these conditions.



• When the Lorentz force (𝐉𝐉×𝐁𝐁) is negligible, the ideal MHD equilibrium model can be further simplified: 

∇×𝐁𝐁 ×𝐁𝐁 = 0
∇ ⋅ 𝐁𝐁 = 0

• Which gives the nonlinear force-free equilibrium model:

∇×𝐁𝐁 = 𝛼𝛼 𝐱𝐱 𝐁𝐁
𝐁𝐁 ⋅ ∇𝛼𝛼(𝐱𝐱) = 0

• And the linear force-free equilibrium model if 𝛼𝛼 is constant.

• Force-free models are used in e.g., solar physics and some fusion applications.



Figures from T. Wiegelmann & T. Sakurai, Living Reviews in Solar Physics 9.1 (2012). 

https://link.springer.com/article/10.12942/lrsp-2012-5


• Note that equilibrium does not necessarily imply energy minimum.

• A common construct for deriving the ideal MHD force balance is to minimise potential energy:

𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
Ω

𝑝𝑝
𝛾𝛾 − 1

+
𝐁𝐁 2

2𝜇𝜇0
𝑑𝑑𝑑𝑑

• Using calculus of variations, 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is stationary when:

𝐉𝐉×𝐁𝐁−∇𝑝𝑝 = 0 MHD force balance equation

• Energy minimisation is the theoretical basis for several 3D MHD equilibrium codes (e.g., VMEC, SPEC).

• Energy ‘minimisation’ also depends critically on the choice of variations (i.e., what you are minimising
with respect to). It gives the same equation, but the physical interpretation of the solution is nuanced.



• Can model tokamaks in the large aspect ratio limit, but misses effects associated with toroidal curvature 
(e.g., poloidal mode coupling).

• In cylindrical coordinates (𝑟𝑟,𝜃𝜃,𝑧𝑧) 1D MHD equilibria satisfy:

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝(𝑟𝑟) +
𝐵𝐵𝜃𝜃2(𝑟𝑟) +𝐵𝐵𝑧𝑧2(𝑟𝑟)

2𝜇𝜇0
+
𝐵𝐵𝜃𝜃2(𝑟𝑟)
𝜇𝜇0𝑟𝑟

= 0

Plasma 

pressure

Magnetic 

pressure

Magnetic 

tension

• Cylindrical geometry, sometimes referred to as a screw pinch.

Figures from J. P. Freidberg, Ideal MHD, CUP (2014). • Analytically tractable so commonly used.

Pressure-driven: 

Interchange modes
Current-driven: 

Kink modes
Some instabilities can be studied 

with the cylindrical model



• 2D axisymmetric (𝜕𝜕𝜙𝜙 → 0) equilibria are described by solutions of the Grad-Shafranov equation:

𝑅𝑅
𝜕𝜕
𝜕𝜕𝜕𝜕

1
𝑅𝑅
𝜕𝜕𝜕𝜕(𝑅𝑅,𝑍𝑍)
𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝜓𝜓(𝑅𝑅,𝑍𝑍)
𝜕𝜕𝑍𝑍2

= −𝜇𝜇0𝑅𝑅2
𝑑𝑑𝑑𝑑(𝜓𝜓)
𝑑𝑑𝑑𝑑

−
1
2
𝑑𝑑𝐹𝐹(𝜓𝜓)2

𝑑𝑑𝑑𝑑

This operator is sometimes 

written as:

= Δ∗ 𝜓𝜓(𝑅𝑅,𝑍𝑍)

• The free functions, 𝑝𝑝(𝜓𝜓) and 𝐹𝐹 𝜓𝜓 = 𝑅𝑅𝐵𝐵𝜙𝜙, are flux 
functions as they depend only on 𝜓𝜓 and follow from:

𝐁𝐁 ⋅ ∇𝑝𝑝 = 0

𝐉𝐉 ⋅ ∇𝑝𝑝 = 0

Figure from:
J. P. Freidberg, 

Ideal MHD, CUP 
(2014). 



Figures from J. P. Freidberg, Ideal MHD, CUP (2014). 



• Stellarators are an example of non-axisymmetric devices.

• Frontier challenges in 3D MHD are closely linked to dynamical systems theory.

• Finding solutions for MHD equilibria when there is no continuous symmetry in the toroidal 
direction is an open topic of research.

• Independent of the MHD model, the structure of 𝐁𝐁 is closely linked to Hamiltonian mechanics.

• When 𝜕𝜕𝜕𝜕 → 0, new structures for 𝐁𝐁 are possible. These are not guaranteed to be consistent 
with assumptions of the ideal MHD model.



Figures from L.-M. Imbert-Gerard et al., arXiv:1908.05360 (2020).

NCSX: has a discrete 

three-fold  toroidal 

symmetry.

Wendelstein 7-X: has a 

discrete five-fold  

toroidal symmetry.

https://arxiv.org/abs/1908.05360




• Recall that steady-state operation is important for magnetic confinement fusion.

• In the MHD regime, we are often interested in states where the plasma is not changing significantly on 
the time scale of interest. 

• Once we have found an equilibrium, we usually want to know whether it is stable or unstable.

• Stability is a concept from dynamical systems theory that tells us what happens to a state when 
it is perturbed.

• An unstable state moves far away from equilibrium when perturbed. A stable state remains close.

• There are many different types of stability:

(Figure adapted from J. P. Freidberg, Ideal MHD, CUP (2014).) 



• For steady-state operation, linearly stable equilibria are typically desirable:

✓ ❌

• Analysing linear is stability is comparatively simple since it is local to the equilibrium point.  

• Using a perturbation series to expand the ideal MHD evolution equations and retaining only first-order 
(linear) terms produces the linearised MHD equations.

• Linear ideal MHD stability reduces to solving a linear eigenvalue problem.



• The eigenvalue problem for linear ideal MHD stability can be solved numerically using a wide variety of 
eigenvalue codes.

• Examining special cases using analytic techniques (e.g., perturbation theory, boundary layer theory, 
asymptotics) produces simple criteria which can be used as metrics for device design and scenario 
development.

• The linearised MHD evolution equations can also be solved directly.





 Physics studies and simulations (e.g., understanding experimental observations)

 Scenario development and studies (e.g., ITER)

 Device design and optimisation (e.g., fusion pilot plant concepts, next-generation stellarators) 

• There are three components to MHD analysis for fusion plasmas:

Equilibrium 
calculations

Linear 
stability 
analysis

Nonlinear 
dynamical 
simulations

Cost, fidelity

• They are complementary analyses which, together, form the workflow for a wide range of applications:
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