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* Introduction: who is the speaker?
*  What is magnetic reconnection?

*  Where does magnetic reconnection occur?

*  Why do we care about magnetic reconnection?
* Does reconnection actually occur? Observations and in situ measuraments
*  Modeling magnetic reconnection

* Exciting questions about reconnection YOU might solve in the future!

* Some references and contacts.
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What is magnetic reconnection?

Magnetic: it involves the (electro)magnetic field.
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Magnetic Geographic .
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Reconnect: something gets disconnected and connects again.



Why are we interested in magnetic reconnection?

Current sheet forms in connection with the
field topology change!
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Before reconnection: Energy stored in the After reconnection: energy is converted to
magnetic field particle acceleration and then heating



Magnetic reconnection on the SUN Plasmoid

* Flares and CMEs:
sudden energy release
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Magnetic reconnection in the Earth’s Magnetosphere
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Why we care about magnetic reconnection?

—

Particles released by
CMEs and solar wind

Impact our heliosphere
and magnetosphere

Charged particles
}gyrate around magnetic
leld lines

How they are accelerate
and reach the Earth

depends on the |
topology and dynamics

of the magnetic field.



Impacts of Space Weather

Solar Flares
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Magnetic reconnection on the Earth: Fusion Devices

toroidal
magnetic field coils
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* Reconnection is an obstacle to
Plasma Confinement for fusion
devices

* The topology and scales and
other parameters In fusion
devices differ from the ones
iInvolved in astrophysical/space
plasmas

* Ultimately the reconnection
mechanism and trigger is the
same



Experiments devoted to Magnetic Reconnection Studies

* Magnetic
Reconnection
eXperiment (MRX,

Princeton)

* Flare (Princeton)
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http://www.t.u-tokyo.ac.jp/index.html

Magnetic reconnection in the Universe
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Magnetic reconnection in the Universe I

PPDs Accretion
disks
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Remote observations of magnetic reconnection

(a) 05:12:19.840

(b) 05:12:31.840
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Takasao et al. ApdJL,
2012 examined
morphology and

dynamics of the magnetic

reconnection region In
the limb flare on 2010

August 18
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Magnetic reconnection in situ

Parker Solar Probe
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Probing magnetic reconnection in situ

Magnetospheric Multiscale Mission
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MRX VS MMS Fox et al 2018

* Comparisons between experiments and space
missions are possible

* Scales and different parameters must be taken
iInto account

* While a satellite observation is unique the
experiment can be reproduced, probes can be
adjusted/added so that the experiment gives us

access to _3uantities and particulars space mission
can’t provide.

* Ultimately the reconnection mechanism and O e e VR
trigger Is the same 21 O /E,

)J,E, 7 oE,

* It is important to understand the ‘calibration’ and 5
the difference in the dynamics

5x MRX




Modeling magnetic reconnection in plasmas

Induction equation

0B
E—VX(VXB)

Alfvén Theorem: magnetic flux through a closed line which moves with the
fluid is constant in time.
7» \What are the scissors that cut magnetic field lines?




Sweet and Parker model for magnetic reconnection

“The observational and

theoretical difficulties with
the hypothesis of magnetic-
field line annihilation

suggest that other
alternatives for the flare
must be explored.” E.

Parker, 1963

~ o~ §—1/2

av A a Energy dissipated in an Alfven time in the
S = TA i— — sheet is proportional to:

sziTA — S_l/sz’UAz'TA — [38-1/2



Non-stationary reconnection: Tearing instability

H. Furth, J. Killeen, and M. N. Rosenbluth, 1963
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Magnetic reconnection at kinetic scales

. (7 5) 1 9P Generalized
i| ene Oz Ohm’s equation

lon scales: Hall effect Electrons are magnetized

L > pe

Electron scales: Parameters

ne = 2-6 x 1013em?

Te = 5-15eV
B = 0.1-0.3kG
Ren et al. 2006, PRL S > 400

* Electron Inertia

* Electron Pressure tensor



Numerical simulations of magnetic reconnection

Example: Spitkovksy, Dorland, Drake, Sironi,
* Zenitani- Hesse, Horiuchi-Usami, Kumar

Et al..
Implicit- PIC

PIC

Lapenta, Pucci,
Marchidis, Innocenti

Ger kinetiC Example: Murphy, Tenerani-
Juno, Teenbarge

Velli-Shi, Rappazzo,
Jekyll Code ‘

ik vork Generalized
Fluid




Fluid simulations of magnetic reconnection

Hall reconnection: Shi et al. 2021 Petschek reconnection: Shibayama et al. 2015
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Full-PIC simulations of magnetic reconnection

Pritchett et al 2010

Daughton et al 2006



Onset of magnetic reconnection

If reconnection was on at all  1.00847
times, how could the energy
accumulate during the build up

0.5

y/L

0.0 C

phase? There must be a trigger
mechanism!

-0.5

0 5 10 15 20 25 30
X/L

Pucci and Velli ApJL 2014
Tenerani et al. ApJ, 2015a



Reconnection in realistic setups: 3D multiple current sheets

Sketch of the ‘ballerina’ curtain separating the
polarities of the magnetic field lines of a rotating PERTURBATION AMPLITUDE f_V=0.0 1 f_b=0.0 1
oblique split monopole.

Dahlburg and Karpen 1995: model of two

adjoining coronal helmet streamers and
definition sketch of triple current sheet.

Pucci et al 2016 PhD Thesis



Turbulent reconnection

Energy is ultimately dissipated at small
scales

We know kinetic physics of magnetic
reconnection becomes important within the

current sheet.

How reconnection transfers energy from
large to small scales”? Plasmoid-instability
(Loureiro 2007, Bhattacharjee 2009, Pucci
2013, Uzdensky et al 201 6{

Plasmoid formation and merging

Dynamics changes at different scales.



Turbulent reconnection

Reconnection in a turbulent setup

t/t,= 171.07556

~4,46x10°

-4.46x10°
-8.93x10°

-1.34x10*

-1,79%x10*




Some Reference and Open questions

Trigger of magnetic reconnection with a normal component: magnetospheric reconnection
storms and substorms (Sitnov et al 2019, Birn 2009)

Trigger of CMEs: ideal instability or simulations ? (Wyper et al 2017, Kliem 2006, Ishiguro and
Kusano 2007)

Does reconnection explain for coronal heating through nano-flares”? (Rappazzo et al 2007-
2008, Hansteen et al 2014)

Energy transfer and dissipation from large to small scales (see. Masaaki Yamada, Russell
Kulsrud, and Hantao Ji 2010)

Do current sheet form in turbulent magnetic setups”? What is the role of Intermittency? (Wan et
al.2013, Osman et al 2014)

What terms provide actual irreversible particle heating? (Yang et al 2017, Zenitani 2011)

Exciting questions about reconnection YOU might solve in the future!



Additional material and contacts

. BOOKs: Vhank you for your attention!
* Magnetic Reconnection by Biskamp (2009)

* Magnetic Reconnection by Priest and Forbes (2000)

* “Basics of Plasma Astrophysics” by Chiuderi and Velli (2015)

* “Introduction to Magnetic Reconnection in Plasmas” by Porcelli (2012)

* “Spheromaks” by Paul Bellan (2000)

* fulvia.e.pucci@jpl.nasa.gov, fulvia.pucci87 @gmail.com | am happy to
set up a zoom call to answer your questions!
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