Introduction to Fusion Energy

2021 Intro to Fusion Energy and Plasma Physics Course | June 14, 2021

Presented by Cami Collins Oak Ridge National Laboratory

My Path in Fusion

Nat. Und. Fellowship

5th Grade Undergrad Grad Postdoc Scientist! 1995 2003-07 2007-13 2014-16 2016	
	>
<image/>	

Nat. Und. Fellowship

	MONTANA STATE UNIVERSITY	WISCONSIN UNIVERSITY OF WISCONSIN-MADISON	UCIrvine University of California, Irvine	GENERAL ATOMICS
5 th Grade	Undergrad	Grad	Postdoc	Scientist!
Fusion=awesom	Solid Oxide Fuel Cells (materials) Solar Physics Fusion Fusion	<complex-block><text></text></complex-block>	ZOT4-TO Image: Constraint of the second se	

		MONTANA STATE UNIVERSITY	UNIVERSITY OF WISCONSIN-MADISON	UCIrvine University of California, Irvine	GENERAL ATOMICS	CAK RIDGE
5 [†]		Undergrad	Grad	Postdoc	Scientist!	Scientist +
	1995	Solid Oxide		2014-16	2016	2020
FI		Fuel Cells (materials)				
كر		Physics Eusion				
c				Cami Gene Scien	Collins ral Atomics ce Lead, Energetic Ion Spe	ectroscopy 243
			Laboratory Plasma Astrophy Fusion Energy Fellowsh	vsics lip	Fusion=hard	I want a fusion pilot plant.
7		Nat. Und. Fellowship			0	° °

(Recent) History of Fusion

Fusion community comes together historic success

Strategic Workshops

Community Planning Workshops

plant by the 2040's!

8

need to do!

they said! (but here's how much it costs)

design by 2028, electricity by 2035!

Outline

- Introduction to Needs, Potential, and Conditions for Fusion
- Progress Towards Fusion Energy
- Challenges in Developing in Fusion Energy
- Exciting New Era for Fusion Energy Development

The Future of Our Civilization Depends on Energy

 Projected need for ~ 25,000 GW from non-CO₂ producing sources

25,000 1 GW-e plants !!!

- By 2050, annual global energy investment would need to reach \$0.66 T (\$23 T cumulative)
 - GDP (2018): US: \$21T, China: \$14T, UK: \$2.9T
 - Global cell phone market: \$0.55 T

Source: IRENA, Global energy transformation, 2019

Source: IPCC AMPERE Project, AMPERE-450-FullTech-OPT Scenario

10

Reward of Developing Fusion Energy Is Well Worth the Risk of Investment

Fuel for thousands of years... No global warming No high level nuclear waste No risk of nuclear accident Available to all nations Available on-demand Minimal land use

Fusion Produces Energy By Combining 2 Nuclei Into 1

To fuse, two positive charges must have enough energy to overcome electric repulsion.

Fusion Produces Energy By Combining 2 Nuclei Into 1

To fuse, two positive charges must have enough energy to overcome electric repulsion.

- The fused nucleus is in a lower energy state than its isolated components
 - The total mass of the product is less than the sum of the masses of the separate particles
 - Energy released depends on binding energy

To produce 1000 megawatts electricity for 1 day (enough for a major city)

Coal Plant

D-T Fusion Plant

Image: state of the state of	Fuel Consumed	1.0 Lb D ₂ 1.5 Lb T ₂ 3 water bottles	
--	------------------	---	--

To produce 1000 megawatts electricity for 1 day (enough for a major city)

Coal Plant

D-T Fusion Plant

18 million Lb coal 80 railroad cars	Fuel Consumed	1.0 Lb D ₂ 1.5 Lb T ₂ 3 water bottles	
61 million Lb greenhouse gases 28,000 33 foot	Waste Produced	2.0 Lb helium 400 balloons	

To produce 1000 megawatts electricity for 1 day (enough for a major city)

Coal Plant

To produce 1000 megawatts electricity for 1 day (enough for a major city)

D-T Fusion Plant

Awesome! How Do We Make A Fusion Power Plant?

Awesome! How Do We Make A Fusion Power Plant?

Deuterium-Tritium Fusion is the Main Focus of Research

Deuterium-Tritium Fusion is the Main Focus of Research

- First thing to note, this is hot!
 - electron-Volt (eV):
 energy imparted to an electron by passing through a potential of 1 V
 - 1 eV ~ 11,600 K
 - fusion reactors must achieve temperatures at least
 10x hotter than the Sun!

->Matter is a plasma at these temperatures

Deuterium-Tritium Fusion is the Main Focus of Research

- D-T is the "easiest"
- Fuel cycles like D-D, D-³He, p-¹¹B
 - Produce less neutrons, reduces the requirement for neutron-tolerant materials in a fusion pilot plant
 - Removes need for tritium breeding
 - BUT require higher temperatures than D-T, require novel surface energy removal technology and configurations

Fusion reactor would need to "breed" tritium

Fusion reactor would need to "breed" tritium

- Enough deuterium in the ocean to supply 60 billion years
- Enough lithium in land to supply 16k years

- at least 12x more energy than all uranium, thorium, coal, oil, and natural gas supplies
- Enough lithium in ocean to supply 30 million years

Outline

- Introduction to Needs, Potential, and Conditions for Fusion
- Progress Towards Fusion Energy
- Challenges in Developing in Fusion Energy
- Exciting New Era for Fusion Energy Development

There Are a Lot of Fusion Concepts Out There

Magnetized ICF

There Are a Lot of Fusion Concepts Out There

Increasing Density

Tokamaks Have Been The Best Performing – We've Built Over 200 Tokamaks in All of Time!

There Are a Lot of Fusion Concepts Out There

There Are a Lot of Fusion Concepts Out There

Increasing Density

The Triple Product is a Fundamental Figure of Merit

• Self-sustaining fusion reaction requires high fusion gain

$$Q = \frac{P_{fusion}}{P_{heat}}$$

 Triple product (Lawson criterion): energy released in fusion products must exceed the sum of the energy applied to heat

Triple Product Progress

[Wurzel, preprint arxiv.org/abs/2105.10954]

Triple Product Progress

Triple Product Progress

[Wurzel, preprint arxiv.org/abs/2105.10954]
But Making Electricity Is More Than Just Triple Product

Significant progress is needed to demonstrate high gain AND long-duration (or high rep rate?) to be relevant for cost-effective, uninterrupted fusion power production

Why Steady-State?

Power Plant Optimization Motivates Steady-State Tokamak Operation

- Efficient conversion of heat to electricity requires a constant heat source
 - Lifetime of heat exchangers limited if temperature deviates by more than a few degrees
 - Time without fusion power between tokamak pulses is too long (>100 s) for a thermal reservoir to be practical
 - Probability of unscheduled outage must be very small
 high reliability needed

38

Why Steady-State?

Power Plant Optimization Motivates Steady-State Tokamak Operation

- Efficient conversion of heat to electricity requires a constant heat source
 - Lifetime of heat exchangers limited if temperature deviates by more than a few degrees
 - Time without fusion power between tokamak pulses is too long (>100 s) for a thermal reservoir to be practical
 - Probability of unscheduled outage must be very small
 → high reliability needed
- Pulsed tokamaks can be used in pairs to yield constant heat source → capital cost increases for fixed power

2009 APS Meeting/TCL/2009

Outline

- Introduction to Needs, Potential, and Conditions for Fusion
- Progress Towards Fusion Energy
- Challenges in Developing in Fusion Energy
- Exciting New Era for Fusion Energy Development

> <u>Control, sustain, and predict</u> a high temperature "burning" plasma to produce neutrons/heat

Much of fusion research has been focused on this 'first' step, so I'll go into a bit more of an overview here (tokamak-centered).

But achieving fusion energy is **critically dependent on finding the integrated solution to all challenges**:

 significant, urgent research is needed here (more to come in materials, fuel cycle talks in this course)

<u>Find materials</u> that can handle extreme conditions of reactor

> Harness fusion power by capturing the energy, breeding sufficient tritium, and reliably producing net electricity

Control, sustain, and predict

Harness fusion power

Control, sustain, and predict

- Core:
 - Generate heat/neutrons from fusion reactions
 - Contain energy as long as possible
 - Produce optimize state w/ weak control

Harness fusion power

Control, sustain, and predict

- Core:
 - Generate heat/neutrons from fusion reactions
 - Contain energy as long as possible
 - Produce optimize state w/ weak control

Edge/Scrape-Off Layer:

Mediate core and

Minimize effect of transients

divertor coupling

Screen impurities

Harness fusion power

- Core:
 - Generate heat/neutrons from fusion reactions
 - Contain energy as long as possible
 - Produce optimize state w/ weak control
 - Edge/Scrape-Off Layer:
 - Mediate core and divertor coupling
 - Minimize effect of transients
 - Screen impurities

 Physics of turbulent transport and large scale MHD instabilities constrain pressure and temperature gradients

 Physics of turbulent transport and large scale MHD instabilities constrain pressure and temperature gradients

Maximum pressure limited by plasma stability: $\beta = n T / (B^2 / 2\mu_o) < \beta_{\text{limit}}$ magnetic field

 Physics of turbulent transport and large scale MHD instabilities constrain pressure and temperature gradients

Maximum pressure limited by plasma stability: $\beta = n T / (B^2 / 2\mu_0) < \beta_{\text{limit}}$

Global energy loss time scale:

minor radius

plasma transport coefficient

Leading order plasma physics term in transport scalings is plasma current (I_p):

 Physics of turbulent transport and large scale MHD instabilities constrain pressure and temperature gradients

Maximum pressure limited by plasma stability: $\beta = n T / (B^2 / 2\mu_0) < \beta_{\text{limit}}$

Global energy loss time scale:

minor radius

plasma transport coefficient

Leading order plasma physics term in transport scalings is plasma current (I_p):

 $\chi \sim 1/I_p$

(β_N is limited by plasma stability)

Burning Plasmas Designs Typically Have $I_p > 8 \text{ MA}, B_T > 5 \text{ T}$ and High Thermal Energy Density

- Design approach: Adopt physics and technology limits for β_N , I_p , and B; Adjust device size for desired n T τ_E

 $\rightarrow \beta_N > 2$; $I_p \sim 8-15$ MA; $B \sim 5-9$ T; $a \sim 1-5$ m

What Makes a Burning Plasma Unique?

Highly non-linear behavior can result

Alpha Particle Heating has Been Observed in D-T Experiments on JET and TFTR at Q < 1

TFTR

Alpha Particle Heating has Been Observed in D-T Experiments on JET and TFTR at Q < 1 $\,$

- In both cases, results were consistent with expectations....But, Q << 1
- What happens as fusion power becomes dominant?

What Makes a Burning Plasma Unique?

Energetic particles interacting with Alfvén Eigenmode instability in ITER

	Fusion Gain	α-Heating Fraction	Scientific Frontier	
	$Q = \frac{P_{fusion}}{P_{heat}}$	$f_{\alpha} = \frac{P_{\alpha}}{P_{\alpha} + P_{heat}}$		
Scientific Breakeven	Q = 1	17%	Alpha confinement	Enge: Jyrki Hokkanen, CSC
Burning Plasma Regime	Q = 5	50%	Alpha heating; Alpha effects on energetic particle instabilities	ITER's research goal
	Q = 10	67%	Strong alpha heating; Non-linear coupling effects	
	Q = 20	80%	Burn Control; potentially strong non-linear coupling	
	Q = 00	100%	Ignition	

Presence of Alpha Heating Leads to Non-Linear Response of Plasma Energy to Applied Heating

Presence of Alpha Heating Leads to Non-Linear Response of Plasma Energy to Applied Heating

In a burning plasma, increase in plasma temperature \rightarrow more alpha production \rightarrow further increase temperature

Burning Plasma Access Will Enable Frontier Research in the Physics of Fusion Plasma Cores

Core physics enabled by burning plasmas

- Alpha particle physics
 - Will alpha particles heat as expected in high Q plasmas?
 - Will non-linear coupling to instabilities cause significant losses?
 - Will new, unexpected phenomena emerge at high alpha power?
- Energy & Particle transport:
 - How will burning-plasma-specific conditions (smaller ρ^{*} , electron heating, low rotation) affect confinement at high Q?
 - Will helium ash be transported efficiently to edge for exhaust?
- Self-organization and plasma control
 - Will the plasma self organize to an optimal state for confinement & stability?
 - If not, how effective will control tools be in producing optimized state?

Handling the Power Flowing Out of the Plasma is a Serious Challenge

- Best tokamak performance found when hot particles escaping main plasma are channeled to a separate region
 - Region known as the divertor
- Heat fluxes on material surface can exceed those of a rocket nozzle
 - $> 10 \text{ MW/m}^2$
- Long time-scale operation (> 30 s) only possible with effective mitigation measures and excellent surface cooling

Handling the Power Flowing Out of the Plasma is a Serious Challenge

Fusion=hard

- Best tokamak performance found when hot particles escaping main plasma are channeled to a separate region
 - Region known as the divertor
- Heat fluxes on material surface can exceed those of a rocket nozzle
 - $> 10 \text{ MW/m}^2$
- Long time-scale operation (> 30 s) only possible with effective mitigation measures and excellent surface cooling

Outline

- Introduction to Needs, Potential, and Conditions for Fusion
- Progress Towards Fusion Energy
- Challenges in Developing in Fusion Energy
- Exciting New Era for Fusion Energy Development

Early Rapid Progress Fueled by Ability to Increase Facility Size ... Until a Limit was Reached

Lull in Progress Towards Fusion Energy Goal Accompanied by Tremendous Advances in Physics Understanding

Can We Leverage New Capabilities to Accelerate the Timeline?

ITER is on the Horizon

ITER – A International Partnership to Demonstrate the Scientific and Technological Feasibility of Fusion Energy

> Designed to produce 500 MW for 400 s

Collaboration of 35 nations

1st plasma in 2025

Fusion power in 2035

Recent Years Have Seen A Significant Increase in Investment and Interest in Fusion Energy by the Private Sector

- \$2B of investment in last 5 years
- Leveraging DOE programs through cost-share programs
- Have established industry trade group to promote common interests

"Creating a Sun on Earth" is a Grand Challenge for the 21st Century

National Academy of Engineering listed Fusion Energy among 14 Grand Challenges for Engineering in the 21st Century

Provide energy from fusion

Human-engineered fusion has been demonstrated on a small scale. The challenge is to scale up the process to commercial proportions, in an efficient, economical, and environmentally benign way.

http://www.engineeringchallenges.org/challenges.aspx

200

1

क्षि

6N

"Creating a Sun on Earth" is a Grand Challenge for the 21st Century

National Academy of Engineering listed Fusion Energy among 14 Grand Challenges for Engineering in the 21st Century

Extra Slides

77

Fusion is Expensive? Cost in Perspective

ITER construction cost estimated EUR 17 billion

single CVN-78-class aircraft carrier: \$9.8 billion

single B-2 Spirit: \$737 million

In total, the F-22 Raptor cost \$79.2 billion to develop

Why is Fusion Taking So Long to Achieve?

World Investment Needed to Reach EXPONENTIAL GROWTH Phase of Energy Sources

