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• Single particle motion is important to understand the 
behavior of plasmas
• We will learn about how magnetic fields modify 

single particle motion
– Gyromotion about a guiding center
– Forces can cause guiding center drift

• Real life consequences and applications
– Why do tokamaks have helical B fields?
– Particle-in-Cell Simulations

Outline and goals for this lecture

• NRL Plasma Formulary
www.nrl.navy.mil/ppd/content/nrl-plasma-formulary

• Introduction to Plasma Physics and Controlled Fusion by F. Chen

References

http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary
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Deuterium
~0.01 MeV

Helium
3.5 MeV

Neutron
14.1 MeV

Tritium
~0.01 MeV

• Sustained fusion reactions require enough particles (density)
• That are energetic enough (temperature) 
• And collide often enough (confinement time)

Plasma physics is the basis of fusion energy research
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Deuterium
~0.01 MeV

Helium
3.5 MeV

Neutron
14.1 MeV

Tritium
~0.01 MeV

• Sustained fusion reactions require enough particles (density)
• That are energetic enough (temperature) 
• And collide often enough (confinement time)

• This is the basis of the ”triple product”:

Plasma physics is the basis of fusion energy research

T~100-200 million K 

n~2-3x1020 ions/m3

τ ~1-2 s

D & T is a plasma at 
these temperatures
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Typical velocity of a 100 million K ion: 

Even with ~1020 ions/m3 , the ion would travel ~10 km 
before colliding with another 

Therefore, these plasmas are effectively collisionless

We can understand a lot about how fusion devices 
confine plasma by studying single particle motion

The ITER tokamak has a minor 
radius of 2 m, so how are the 
particles confined?

The trick: use magnetic fields

charged particlemagnetic field line

with magnetic field 

no magnetic field 
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• A particle with charge (q) moving with velocity (v) in the 
presence of electric and magnetic fields will experience a force:

Charged Particles Feel The (Lorentz) Force

We know from Newton’s 
second law of motion that 
force causes acceleration:

A charged particle
moving perpendicular to 
the magnetic field feels a force
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• Consider the motion of a particle in a constant, uniform B field

How Does a Charged Particle Move in a Magnetic Field?

y

x

Then

So we can writev

F
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• Consider the motion of a particle in a constant, uniform B field

How Does a Charged Particle Move in a Magnetic Field?

y

x

Then

So we can write

One “gyration” or “gyro-orbit” completed
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y

x

Let’s break this into components:

Goal: Solve the Equations of Motion for a Charged 
Particle In A Magnetic Field

The ‘dot’ represents  

Particles move freely 
along the field line

Matching components: 
v

F

Let’s do the algebra!
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Take Another Time Derivative & Substitute to Obtain 
Differential Equations For Each Spatial Coordinate

Rewriting, we get

These may remind you of the equations for a simple harmonic oscillator

These equations are coupled:

Take another time derivative 
and substitute:
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Solve the Differential Equations 

These differential equations can be solved using sines and cosines:

the magnitude of the initial 
velocity perpendicular to B

an arbitrary phase 
to match the initial 
velocity conditions

account for positive 
or negative q 

Homework: Work through the details on your own!
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Integrating, we obtain the positions as a function of time

“Larmor” radius or “gyro-radius”

“Cyclotron” or “gyro-” frequency

• Charged particles undergo circular orbits about a guiding center  

The Result: Circular Motion About A Guiding Center 
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Let’s take                   and 

Gyromotion of a Charged Particle In A Magnetic Field

y

x

For a positively charged particle:

1. At   ,
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Gyromotion of a Charged Particle In A Magnetic Field

For a negatively charged particle:

1. At   ,
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Gyromotion of a Charged Particle In A Magnetic Field

For a negatively charged particle:

1. At   ,

2. At                    ,-
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Let’s take                   and 

y

x

Gyromotion of a Charged Particle In A Magnetic Field

For a negatively charged particle:

1. At   ,

2. At                    ,-
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y

x

Gyromotion of Ions vs. Electrons

• Ions generally have a much larger Larmor radius than electrons

• The direction of gyromotion depends on the sign of the charge

-

In ITER, a typical deuterium ion
with Ti=10 keV and B=5 Tesla would have 

An electron with Te=10 keV and B=5 Tesla has 

(60 times smaller)
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Summary: Particle motion and the guiding center

• Gyration strongly confines the motion of particles 
perpendicular to the applied magnetic field

• The guiding center is what is left over when you 
average of the gyration

• The radius of the particle motion is the Larmor or 
Gyro- radius

• The cyclotron or gyro frequency is the frequency of 
a charged particle moving perpendicular to a 
uniform B field

• The particle motion is intuitively composed of 
(1) Gyration and
(2) “Drift” of the guiding center
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Some guiding center dynamics: Magnetic Mirrors

Result: 
gyromotion + mirror force in the         direction

The Br ends up causing additional 
acceleration in the z direction: 

The magnetic moment is mirror force is: 

The magnetic moment is a constant of motion
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Magnetic Mirror Confinement In Action

Early Fusion Experiments

Ex: Tandem Mirror Experiment 
(LLNL,1980’s) and other variants 
(Polywell devices)

Particles with enough 
v|| can still escape
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y

x

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field
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y

x

Accelerates due to E 

Faster velocity increases vxB

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field
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y

x
Faster velocity increases vxB

Decelerates 

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Accelerates due to E 
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y

x

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Faster velocity increases vxB

Decelerates 

Accelerates due to E 
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This is called the E x B drift! 

y

x

Ion guiding center drifts in the direction 
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Guiding Center Drift Due to E x B

y

x
-

The ExB drift can be written more generally as

• ExB drift is independent of charge and mass

• Both electrons and ions move together

Electron guiding center also drifts in the direction 
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Other Forces Can Cause Guiding Center Drift

• Any force perpendicular to B can cause particles to drift

Drift due to force:

Examples of forces: gravity

centrifugal

Rc

• Bend the magnetic field into a donut shape 
• No end losses because the field lines go 

around and close on themselves 
• BUT a particle following a toroidal magnetic 

field would experience Fcf
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A particle moving along a curved field 
line will drift up or down, depending on 
the sign of the charge

The outward centrifugal force causes curvature drift

z

Btoroidal

Rc

Curvature Drift Due to Bending Field Lines
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Spatially Varying Magnetic Field Strength 
Also Causes Drift: The Grad B drift
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• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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-

• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger

• The resulting drift velocity is described by:

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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What Happens To Charged Particles In A 
Purely Toroidal Magnetic Field?

Ion 
drift

+
++

+

Electron
drift-

- - -

Btoroidal

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift: these effects add  

z

ɸ
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Charged Particles Will Drift Outward 

Ion 
drift

Electron
drift

E

+
++

-
- -

+

-

Btoroidal

• This means that no matter what, particles in a torus with a 
purely toroidal field will drift radially out and hit the walls.  

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift  

z

ɸ
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Tokamak Solution: Add Poloidal Magnetic Field

Iplasma

Bpoloidal

Toroidal: long way around
Poloidal: short way around

Btoroidal

z

ɸ

Tokamak: 
1. Use external coils to apply a toroidal magnetic field
2. Drive current in the plasma to generate a poloidal magnetic field
The resulting helical magnetic field is much better at confining charged 
particles.

More on this on Day 5!

Stellerator:

Twist is applied by 
external magnets
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Particle orbits in Tokamaks (Banana Orbits)

Particles that don’t have enough v|| 
are reflected by the mirror force at 
the high field side of the tokamak

Trapped particles won’t hit the wall if the 
banana orbit width is small enough
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The ideas behind single-particle physics scale all the way to 
advanced simulation techniques 

• Plasma simulations run on the world’s fastest supercomputers to study the 
trajectories of charged particles in electromagnetic fields

• Used to study electron acceleration and ion heating
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We use PIC codes to study compact Laser Wakefield Accelerators to 
generate energetic electron beams
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• Magnetic fields are required to 
confine hot, collisionless fusion plasmas 

• Depending on magnetic field 
geometry or the presence of other 
forces like electric fields, the guiding 
center can undergo drifts (e.g. ExB, 
gradB and curvature drifts)

• Single particle motion enables us to 
understand complex plasma behavior 
– even towards achieving fusion!

Conclusions

Have a great summer and 
feel free to get in touch!

amina.hussein@ualberta.ca


