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YOURS TRULY IN A FEW WORDS (I)

I Undergrad training: Engineering management, in France

I M.Sc in Nuclear Engineering, in France

I Irresistibly attracted to fundamental research + theory

I Rejected from all PhD programs in US, except for MIT’s Nuclear
Engineering

I PhD in Applied Plasma Physics from MIT – Fusion theory



YOURS TRULY IN A FEW WORDS (II)

I Post-doc at MIT – Magnetic confinement fusion and particle
accelerator theory

I 2012 until now: Faculty position in mathematics at Courant
Institute of Mathematical Sciences, New York University

I Development of new models and high performance numerical
methods for plasma physics

I Intermediary between applied mathematicians and plasma
physicists

I Enjoys outreach, teaching, mentoring



DESCRIBING PLASMAS



METHOD I: SELF-CONSISTENT PARTICLE PUSHING

Natural idea: Move
each particle according
to Fp = mpap

I Difficulty 1: There are MANY particles, N ∼ 1020 − 1022 in
magnetic fusion grade plasmas

I Difficulty 2: Fp depends on the position and velocity of all the
other particles. Fp is expensive to compute
e.g.: for electrostatic electric field force

Fp = qp

N∑
j=1

1
4πε0

qj

|xj − xp|2

I Problem still not tractable even with the most powerful
computers when N ∼ 1020 − 1022 and best algorithms



DEBYE SHIELDING

Even if computers were powerful enough, should we ask them to
solve this problem?



DEBYE SHIELDING
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DEBYE SHIELDING

(r)  1/r

D

(r)  [e
-( 2r/

D)]/r

I Local charge imbalance shielded within a few λD

I λD = ε0T
e2n is called the Debye length



METHOD II: FOR WEAKLY COUPLED PLASMAS,
COARSE-GRAIN AVERAGE IN PHASE SPACE

I Weakly coupled plasma: large # of particles in any volume of
size λ3

D
I Replace the discrete particles with smooth distribution function

f (x,v, t) defined so that

f (x,v, t)dxdv = # of particles in 6D phase-space volume dxdv

Cartoon figures by G. Lapenta in “Particle In Cell Methods With Application to
Simulations in Space Weather”



DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
∫∫∫

f (x,v, t)dv Density

nV(x, t) =
∫∫∫

vf (x,v, t)dv Mean flow

P(x, t) = m
∫∫∫

(v−V) (v−V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
∂f
∂t

+
dx
dt
· ∇f +

dv
dt
· ∇vf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v× B)

⇒ ∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf = 0

This is the Vlasov equation



THE BOLTZMANN EQUATION

I Often separate short range and long range fields, leading to the
Boltzmann equation:

∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf =

(
∂f
∂t

)
c

This equation to be combined with Maxwell’s equations:

∇× E = −∂B
∂t

∇× B = µ0J +
1
c2
∂E
∂t

I Nonlinear, integro-differential, 6-dimensional PDE –
Challenging

I Describes phenomena on widely varying length (10−5 – 103 m)
and time (10−12 – 102 s) scales

I Still not a piece of cake, and never solved as such in computers



MOMENT APPROACH

∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf =

(
∂f
∂t

)
c

I Taking the integrals
∫∫∫

dv,
∫∫∫

mvdv and
∫∫∫

mv2/2dv of this
equation, we obtain the exact fluid equations:

∂ns

∂t
+∇ · (nsVs) = 0 (Continuity)

mn
(
∂Vs

∂t
+ Vs · ∇Vs

)
= qsns (E + Vs × B)−∇ · Ps + Rs (Moment.)

d
dt

(
3
2

ps

)
+

5
2

ps∇ ·Vs + πs : ∇Vs +∇ · qs = Ws (Energy)

with Ps = psI + πs.
I Closure problem: for each moment, we introduce a new

unknown ⇒ End up with too many unknowns
I Need to make approximations to close the moment hierarchy



FLUID DESCRIPTIONS OF PLASMAS



HIGH COLLISIONALITY

Low density – low collisionality High density – high collisionality

I When there are many collisions, nearby particles remain nearby
during entire evolution.

I Thermal equilibrium established locally

I Fluid-like behavior



LOW TEMPERATURE
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I At low temperature, nearby particles have similar total velocity

I Nearby particles remain nearby during the entire evolution

I Fluid-like behavior



LOW TEMPERATURE
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I At low temperature, nearby particles have similar total velocity

I Nearby particles remain nearby during the entire evolution

I Fluid-like behavior



STRONG MAGNETIC FIELD

Weak magnetic field Strong magnetic field

I At high magnetic field, short mean free path perpendicular to
the magnetic field

I Projections of nearby particles in plane ⊥ to magnetic field
remain nearby during the entire evolution

I Fluid-like behavior perpendicular to the magnetic field



FLUID MODELS

I For some fusion applications/plasma regimes (heating and
current drive, transport), kinetic treatment cannot be avoided

I Fluid models are based on approximate expressions for higher
order moments (off-diagonal entries in pressure tensor, heat
flux) in terms of lower order quantities(density, velocity,
diagonal entries in pressure tensor)

I Approximations depend on the physics regime of interest

I Benefits of fluid models:
I Much less computationally expensive
I Intuitive interpretation for the terms in the equations



CLOSURE EXAMPLE
Quasi-neutral plasma of electrons and ions, weakly magnetized

qe = −κe∇Te − 0.71
TeJ
e

qi = −κi∇Ti

πs
jk = −ηs

(
∂Vs

j

∂xk
+
∂Vs

k
∂xj
− 2

3
∇ ·Vδjk

)
κe,κi: electron and ion thermal conductivities
ηs: electron and ion viscosity
We recognize:

I Fourier’s law of thermal conduction for both electrons and ions –
Intuitive term. Heat flows from hot places to cold places.

I Perhaps unexpected extra term: convective heat transport due to
fast electrons

I Viscous diffusion of momentum associated with derivatives of
velocities



VISCOUS DIFFUSION
No viscosity

Initial flow profile Some time later

With viscosity

Initial flow profile Some time later

Viscous momentum exchange/momentum diffusion



A GREAT, SIMPLE FLUID MODEL: IDEAL MHD

∂ρ

∂t
+∇ · (ρV) = 0

ρ
dV
dt

= J× B−∇p

d
dt

(
p
ρ5/3

)
= 0

E + V× B = 0

∇× E = −∂B
∂t

∇× B = µ0J
∇ · B = 0

Valid under the conditions(
mi

me

)1/2 (viτii

a

)
� 1

rLi

a
� 1

(rLi

a

)2
(
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)1/2 a
vTiτii
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WORD OF CAUTION

The validity of a fluid approximation depends both on the plasma of
interest and on the characteristics of the phenomena of interest in
that plasma

For a given plasma, fluid models can be excellent for some
phenomena (e.g. macroscopic phenomena), and unreliable for other
phenomena (e.g. phenomena at the DeBye scale)



SUCCESSFUL FLUID MODELS



MAGNETIC CONFINEMENT FUSION EQUILIBRIUM
Ideal MHD is used to accurately predict the equilibrium magnetic
configuration of fusion devices.

I The regions of constant pressure are nested toroidal surfaces
I Magnetic fields and currents lie on these nested surfaces



VERTICAL INSTABILITY

MHD models and codes accurately calculate the loss of vertical
stability in tokamaks

Figure from F. Hofmann et al., Nuclear Fusion 37 681 (1997)



EDGE LOCALIZED MODES IN TOKAMAKS

MHD models and codes can capture the filamentary nature of
”ballooning” modes in the edge of tokamaks

S.J.P. Pamela et al. 2013 Plasma Phys. Control. Fusion 55 095001



SOLAR CORONA
MHD models and codes are used to explain the dynamics of the solar
corona.

Miki Z, Linker J, Lionello R, Riley P, Titov V (2007) Predicting the structure of the solar corona for the total solar eclipse of
March 29, 2006. In: Demircan O, Selam SO, Albayrak B (eds) Solar and stellar physics through eclipses. ASP conference series,
vol 370. Astronomical Society of the Pacific, San Francisco, pp 299307



DYNAMICS OF ASTROPHYSICAL PLASMAS

Relativistic MHD models and codes are used to understand the
structure and dynamics of plasmas around accreting black holes and
neutron star systems

Cartoon figure from Christopher Carey
Simulation from Yosuke Mizuno et al. 2014 ApJ 784 167



COMPLEMENTARITY OF PARTICLE AND FLUID PICTURES



THE VALUE OF QUALITATIVE UNDERSTANDING

I In general, both a single-particle model of the plasma and a fluid
model have mathematical flaws

I They are nevertheless useful to interpret results and build
intuition

I Insights are amplified by combining both view points

I Let us see this with two simple examples



CAN ONE CONFINE A HOT PLASMA WITH A PURELY

TOROIDAL FIELD?

I Bend a solenoid into a torus to confine a hot fusion plasma

I Rely solely on toroidal fields

I Relatively simple, thus great! Wait, does it work?

I What does the fluid picture have to say?



PURELY TOROIDAL FIELDS DO NOT WORK – FLUID

PICTURE

“Tire-tube” force

pAII > pAI
⇒ Net outward force

“1/R” force
BT ∝ 1/R

BT1 > BT2, A1 < A2
B2

T1A1 > B2
T2A2

⇒ Net outward force

Cartoon figures from J.P. Freidberg, MHD Theory of Fusion Systems, MIT Open
Courseware 2007



PURELY TOROIDAL FIELDS DO NOT WORK – SINGLE

PARTICLE PICTURE

I Magnetic field in the toroidal direction
I Grad-B and curvature vectors in the radial direction

⇒ Grad-B and curvature drifts in the vertical direction



PURELY TOROIDAL FIELDS DO NOT WORK – SINGLE

PARTICLE PICTURE

I The electrons always drift upwards
I The ions always drift downwards
⇒This leads to charge separation!

I Electric field forms because of charge separation

⇒ All the particles E× B drift out of the device!



SOLUTIONS



INTERCHANGE INSTABILITY

Single-particle picture of the same instability

J.P. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press
(2007)



PLASMAS EXPERIMENTS TO VALIDATE THEORETICAL
RESULTS IN FLUID DYNAMICS



ISOMORPHISM BETWEEN PERPENDICULAR PLASMA

DYNAMICS AND 2D EULER EQUATIONS

Non-neutral plasma in strong B
field, ⊥ dynamics

∂n
∂t

+∇φ× ez · ∇n = 0

∇2φ = −n

n: plasma density; φ: electrostatic
potential

2D incompressible Euler

∂ω

∂t
+∇ψ × ez · ∇ω = 0

∇2ψ = −ω

ω: z-directed vorticity; ψ: stream
function for the flow

I Isomorphism recognized a long time ago1

I We can use non-neutral plasma physics experiments to study
inviscid (ideal) fluids!

1C.F. Driscoll and K.S. Fine, Phys.Fluids B 2 1359 (1990)



INVISCID DAMPING

∂n
∂t

+∇φ× ez · ∇n = 0 ∇2φ = −n

Movie!

M.V. Melander, J.C. McWilliams and N.J. Zabusky, J. Fluid Mech. 178 137 (1987)
A.J. Cerfon, Phys. Rev. Lett. 116, 174801 (2016)



INVISCID DAMPING – EXPERIMENTS

D.A. Schecter et al., Physics of Fluids 12, 2397 (2000)



SHEAR LAYER INSTABILITY
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A.J. Cerfon, Phys. Rev. Lett. 116, 174801 (2016)



SHEAR LAYER INSTABILITY – EXPERIMENT!

N.C. Hurst et al., Physics of Plasmas 27, 042101 (2020)



Thanks for listening!

Comments? Questions?


