Plasma Materials Interactions II: Revenge of the PMI

Tyler Abrams

with special thanks to G. Sinclair, J. Guterl

General Atomics

Presented to the 2021 SULI Lecture Series June 22, 2021

My Career in Plasma Physics, So Far

PPPL / DIFFER (grad school)

MIT PSFC (undergrad)

DIII-D (Postdoc)

DIII-D (NUF internship)

DIII-D (GA Staff Scientist)

Abrams/PMI II/SULI Lecture

Outline

How to Evaluate Plasma-Materials Interactions

- Characterize the Edge Plasma
- Observe the Effect on the Wall Material (Spectroscopy)
- Perform "Post-Mortem" Analysis of the Material

• Promising Plasma-Facing Materials

- Tungsten
- Silicon Carbide
- Liquid Metals

• Wrap-Up and Final Thoughts

Outline

• How to Evaluate Plasma-Materials Interactions

- Characterize the Edge Plasma
- Observe the Effect on the Wall Material (Spectroscopy)
- Perform "Post-Mortem" Analysis of the Material
- Promising Plasma-Facing Materials
 - Tungsten
 - Silicon Carbide
 - Liquid Metals
- Wrap-Up and Final Thoughts

Edge plasma conditions diagnosed via Langmuir probes and Thomson scattering

- Langmuir probes
 - Conductive probe contacts plasma
 - Collected current varies with voltage due to sheath effects
 - Ion flux, n_e , T_e can be extracted
 - Fast (~1-10 kHz), but can only measure at the edge

Edge plasma conditions diagnosed via Langmuir probes and Thomson scattering

Langmuir probes

- Conductive probe contacts plasma
- Collected current varies with voltage due to sheath effects
- Ion flux, n_e , T_e can be extracted
- Fast (~1-10 kHz), but can only measure at the edge

Thomson Scattering

- Spectroscopic measurement of photon-electron collision
- Extract n_e,T_e from line height/width
- Slow (50-100 Hz), but measure anywhere in the plasma

Courtesy of D. Eldon

Divertor Heat Flux characterized via IR thermography

 Utilize Planck's Law to relate IR emission to temperature:

 Apply thermal model to relate temperature to heat flux*:

Planck's law Power spectrum vs. Temperature and Wavelength

Divertor Heat Flux characterized via IR thermography

 Utilize Planck's Law to relate IR emission to temperature:

HF measured by Langmuir probes generally agree reasonably well with IR $q_{\parallel} \approx \gamma T_e J_{sat} / \sin \theta$ $\gamma \approx 7$ $\theta \approx 1.5^{\circ}$ Sheath heat flux Field line angle factor

• Apply thermal model to relate temperature to heat flux*:

Barton Phys Scr 2017

Divertor plasma profiles look very different in L-mode and H-mode (ELM vs. inter-ELM)

- L-mode: Poor confinement implies broad plasma profiles
 - Scale lengths O(several cm)
 - No fast time constants -> fast time response not crucial
- H-mode: Better confinement means narrower profiles
 - Fast time constants (ELMs) implies need for fast time response
 - Typically average over end portion of ELM cycle
- What if LP and TS are not consistent?

Guterl PET 2017

Divertor plasma profiles look very different in L-mode and H-mode (ELM vs. inter-ELM)

- L-mode: Poor confinement implies broad plasma profiles
 - Scale lengths O(several cm)
 - No fast time constants -> fast time response not crucial
- H-mode: Better confinement means narrower profiles
 - Fast time constants (ELMs) implies need for fast time response
 - Typically average over end portion of ELM cycle
- What if LP and TS are not consistent?

J_{sat} is more "trusted" from LPs. Actual ion flux measurement at the target

T_e is more "trusted" from TS. Local measurement, not averaged over a flux tube

Density can be "backed out" based on Jsat and T_e

Abrams/PMI II/SULI Lecture

Plasma conditions in H-mode oscillate due to ELMs

Edge Localized Modes

- Periodic bursts of energetic plasma expelled from the core
- "Spikes" observed on heat flux measurements
- Big problem for reactors!
- Current understanding of ELMs is still somewhat empirical
 - "Free streaming model": detachment of a pedestal plasma filament into SOL

Plasma conditions in H-mode oscillate due to ELMs

Edge Localized Modes

- Periodic bursts of energetic plasma expelled from the core
- "Spikes" observed on heat flux measurements
- Big problem for reactors!
- Current understanding of ELMs is still somewhat empirical
 - "Free streaming model": detachment of a pedestal plasma filament into SOL

Empirical model for ELM power deposition agrees reasonably well with data

Intra-ELM plasma conditions are difficult to diagnose

- Langmuir probes run into power supply current limits
 - Results in "back off" on bias
 - Do not capture peak of J_{sat}
 - Cannot fit exponential to
 I-V curve to infer T_e

Intra-ELM plasma conditions are difficult to diagnose

- Langmuir probes run into power supply current limits
 - Results in "back off" on bias
 - Do not capture peak of J_{sat}
 - Cannot fit exponential to
 I-V curve to infer T_e
- TS measurement frequency is comparable to ELM frequency
 - No information on ELM evolution
 - Can use "coherent averaging" if a number of similar ELMs exist

DTS indicates strong n_e increase during ELMs, but similar (or decreased) T_e

Abrams APS 2016

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the Effect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material
- Promising Plasma-Facing Materials
 - Tungsten
 - Silicon Carbide
 - Liquid Metals
- Wrap-Up and Final Thoughts

Measuring PMI Involves Using Spectroscopic Diagnosis of the Edge Plasma

- Eroded wall material becomes an *impurity* in the plasma
 - Impurities emit line radiation via electronic transitions

 Impurities in the plasma measured with spectroscopy

$$\Gamma_{W^0} = \frac{S}{XB} \int_0^\infty \Phi_{W^0} dz$$

$$\frac{S}{XB} \equiv \text{``lonizations per photon''}$$

$$\text{``Inverse photon efficiency''}$$

 S/XB coefficients typically obtained from databases

- e.g., ADAS: www.adas.ac.uk

What spectroscopy diagnostic you need depends on what you want to measure

Diagnostic	Spectral resolution	Spatial resolution	Time resolution
Spectrometer	Can be very high (<0.1 nm)	Requires multiple chords. O(cm) spot sizes	Limited by read-out time, integration time. typically ms-s
Filterscopes	1-10 nm wavelengt h region (Bandpass filter)	Requires multiple chords. O(cm) spot sizes	Very fast, limited by digitizers, typically kHz-MHz
Filtered camera	1-10 nm wavelengt h region (Bandpass filter)	2D image, mm-cm, depends on lens	Slow cameras (30 Hz) are cheap, Fast cameras (kHz-MHz) are expensive

Grating-based spectrometers measure intensity vs. wavelength

- Czerny-Turner design enables high spectral resolution
 - Distinguish closely neighboring lines
 - Zeeman splitting -> B_T , LOS
 - Doppler shifts/broadening -> v_i , T_i
 - Careful line identification possible

Typical Spectrum acquired with DIII-D High-Resolution Spectrometer

Filterscopes provide very high time resolution over an integrated spectral range

19/60

Light directly coupled to photomultiplier tubes (PMTs)

- Bandpass filters only transmit a certain narrow wavelength range
- ELM-resolved information!

Caveat: Signals includes both line of interest and background

Abrams/PMI II/SULI Lecture

Filterscopes provide very high time resolution over an integrated spectral range

Two-filter method developed on DIII-D to separate signal from background

Light directly coupled to photomultiplier tubes (PMTs)

- Bandpass filters only transmit a certain narrow wavelength range
- ELM-resolved information!
- Caveat: Signals includes both line of interest and background

Filterscopes provide very high time resolution over an integrated spectral range

Two-filter method developed on DIII-D to separate signal from background

Filtered imaging provides spatially resolved light intensities

Camera images divertor surface through bandpass filter

- Background subtraction can be performed from a local source
 - Assume toroidal symmetry
 - Subtract ROI toroidally offset as background

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the Effect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material
- Promising Plasma-Facing Materials
 - Tungsten
 - Silicon Carbide
 - Liquid Metals
- Wrap-Up and Final Thoughts

Measurements of W prompt re-deposition can be conducted via post-mortem analysis

- W/Mo re-deposition inferred from post-mortem analysis on DIII-D
 - DIII-D DiMES experiments
 - Small 1 mm spot (R~0) vs. large 1 cm spot (R~?)
 - Decent agreement with ERO code, assuming 1.8% C concentration

	Мо		W	
	EXP	ERO	EXP	ERO
Net erosion rate (nm/s)	0.42	0.43	0.18	0.14
Net/gross erosion ratio	0.56	0.61	0.29	0.33

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the Effect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material
- Promising Plasma-Facing Materials
 - Tungsten
 - Silicon Carbide
 - Liquid Metals
- Wrap-Up and Final Thoughts

Three Classes of Materials are Envisioned to Have Potential as Plasma-Facing Materials for Fusion

- 1. Refractory Metals (W and W-alloys)
 - Acceptable operational temperature window, >800 °C
 - Difficult/expensive to fabricate, machine
- 2. Ultra High-Temperature Ceramics (UHTCs)
 - Graphite, SiC, other carbides, diborides, MAX phase...
 - High temp. (> 1000 °C), maintain strength under high neutron fluence
 - Fiber composites generally at lowest TRL (joining, hermeticity)

3. Liquid Metals

- Primarily Lithium, but also Sn, Sn-Li Eutectics
- "Self-healing:" separates the material problem from PMI problem
- Most difficult chemically and technologically

CFC divertor in ITER eliminated due to concerns about cost + T retention via C co-deposition

W was chosen as ITER divertor material due to low T

- "Be wall + W divertor" planned for entire ITER lifetime
 - Divertor replacement?

Sputtering yields of plasma-facing materials

 W sputters significantly less than low-Z materials like C or Be

...but one W atom in core is much worse than a C/Be atom

• W has highest melting temp of any solid material (except C)

ITER/DEMO W monoblock design tends to fail after several hundred thermal cycles

Abrams/PMI II/SULI Lecture

Neu PPPL Seminar

Toughening of Tungsten Fiber Composites (W_f/W)

Toughening by mechanism analogous to ceramic-fiberreinforced ceramics

Stress redistribution by local energy dissipation acting behind cracks

[based on Evans, J Am Ceram Soc 73, Nb. 2, 1990]

W_f/W fabricated at FZ Julich^{1 1Ries}

¹Riesch Phys Scr 2014

Fracture surface of W_f/W after Charpy impact test

H. Gietl et al., Fus. Eng. Design 124 (2017) 396

Neu PPPL Seminar

W_f/W shows good performance in mechanical testing

Increasing the toughness of W:

- Production of dense W_f/W by CVD
- Development of optimized fabrics and continuous deposition

W_f/W samples confirm:

Charpy impact tests
 ->ductile behaviour of fibers

Monotonic tensile test -> no catastrophic failure

• Low cycle fatique testing

H. Gietl et al., Fus. Eng. Design 124 (2017) 396

10000 cycles at 60/70/90/100% (each) of maximum stress without failure

Dispersoids can help to stabilize W microstructural features, improve resilience to neutron damage

- Incorporation of dispersoids can improve resistance of W to n-damage, recrystallization at high temperatures.
- Ongoing material development at Penn State, University of Utah, Tohuku University [1-3].

Above: SEM/FIB images showing microstructure of dispersoid strengthened W specimens [2]

- Most testing to date with "single effect" laboratory experiments
- Planned expts. will use DIII-D/DiMES to expose specimens to combined high heat and particle flux

 H. Kurishita, S. Matsuo, H. Arakawa, et al., Phys. Scr. **T159** (2014) 014032.
 - 2 R. D. Kolasinski, D. A. Buchenauer, R. P. Doerner, et al., Ing. J. Ref. Met. Hard Mat. 60 (2016) 28.
 - 3 E. Lang, H. Schamis, N. Madden, et al, J. Nucl. Mater. 545 (2021) 152613.

Dispersoid strengthened W properties and experimental results:

 Near-surface blistering during H exposure nearly eliminated up to ~10²⁵ D/m²

Dispersoid strengthened W properties and experimental results:

- Near-surface blistering during H exposure nearly eliminated up to ~10²⁵ D/m²
- Improved resistance to grain growth during high-temperature annealing up to 1800 °C

grain growth in ITER W

defect annealing in ITER W

[1] A. Manhard, K. Schmid, et al., J. Nucl. Mater. 415 (2011) \$632.

Dispersoid strengthened W properties and experimental results:

- Near-surface blistering during H exposure nearly eliminated up to ~10²⁵ D/m²
- Improved resistance to grain growth during high-temperature annealing up to 1800 °C

Above: Comparison of grain growth in IGW vs. different dispersoid strengthened W materials

E. Lang, H. Schamis, N. Madden, et al, J. Nucl. Mater. **545** (2021) 152613.

Observations:

- Near-surface blistering during H exposure nearly eliminated up to ~10²⁵ D/m²
- Improved resistance to grain growth during high-temperature annealing up to 1800 °C
- Moderately higher (2-3 x) hydrogen isotope retention / permeation
 - However most trapped inventory can be liberated from the surface at low temperature (< 300 °C) [Barton et al., Nucl. Mater. Energy (2019)]

Above: Hydrogen permeability through different W materials, c.f. D. A. Buchenauer et al., Fusion Eng. Design (2016).

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the E ffect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material

• Promising Plasma-Facing Materials

- Tungsten
- Silicon Carbide
- Liquid Metals
- Wrap-Up and Final Thoughts

SiC Poses a Number of Potential Advantages as a Plasma-Facing Component (PFC) for Next-Step Devices

• Graphite and Tungsten are the most studied, but are not ideal...

PFC Property (not comprehensive)	Graphite	Tungsten	Silicon Carbide
Chemical Erosion*			?
Physical Erosion*	<u></u>		?
Melting/ Leading Edges	<u></u>		
Impurity Radiation		<u></u>	<u></u>

*Ultimate limit on T retention (via co-deposition)¹

¹Doerner NME 2019 ²Katoh JNM 2014

- Graphite largely not considered reactor-relevant due to hydrogen retention and low neutron tolerance
- Silicon Carbide could reduce C erosion and co-deposition without the drawbacks of high-Z materials
 - Next generation SiC/SiC composites² has stimulated renewed interest
 - Physical and chemical erosion properties need to be better understood -> ongoing research

SiC coatings fabricated at General Atomics via chemical vapor deposition (CVD) were used for plasma bombardment testing

- SiC samples were fabricated by General Atomics
- Chemical vapor deposition on ATJ graphite substrate
 - crystalline β -SiC coating
 - layer thickness = $100-200 \,\mu m$
- Pristine composition: 50 \pm 5 % Si/50 \pm 5 % C
- Sample geometries: Buttons, DiMES caps, DIII-D tiles

SiC-coated samples

Abrams/PMI II/SULI Lecture

D retention via implantation in SiC measured in PISCES, found to be relatively similar to tungsten

- W and SiC samples exposed to same conditions in PISCES-E linear plasma device
- Total retention in SiC ~2x higher than W

- SiC samples exhibited one major desorption peak ~ 900 K
 - Somewhat higher than W (~600 K)
 - More similar to peaks in pure Si & graphite

Heat-treated SiC samples exhibited slightly lower overall D retention due to annealing of intrinsic defects

- DIII-D divertor (DiMES) exposure conditions
 - L-mode, Fluence ~ $2.5 \times 10^{24} \text{ m}^{-2}$
 - Average D⁺ energy ~ 100 eV
- D retention quantified via Laser-Induced Breakdown Spectroscopy/Laser Ablation Mass Spectrometry (LIBS/LAMS)
 - Erosion/pulse (LAMS) ~ 0.3 μ m
- Higher heat treatment temperature lowers overall D retention
 - adding heat anneals intrinsic defects that can trap D

SiC samples exhibited 4× decrease in carbon chemical erosion compared to graphite samples; chemical erosion of Si not observed

- CD emission band (430 nm) serves as proxy for chemical erosion of carbon
 - D/XB method used to approximate Y_c^{chem} from CD band
- Y_c^{chem} from SiC is $4 \times$ lower than that from graphite on average
 - estimated Y_c^{chem} values from graphite are consistent with Roth formulation [1]
- Si II, C II peaks not observed
 - T_e in PISCES too low for significant ionization

Spectroscopically Inferred Si Erosion from SiC is Significantly Lower than for Pure Silicon in DIII-D

- Atomic erosion flux inferred via ionizations/photon (S/XB) method¹
 - Emission intensity ~ erosion rate
 - Normalized to ion flux to measure Y_{Si}
- Data closer to pure Si due to enrichment
- Model slightly under-estimates Si erosion, likely due to ELMs (not included in model)

¹ADAS, www.adas.ac.uk

Spectroscopically Inferred C Erosion from SiC is Significantly Lower than for Pure Graphite in DIII-D

- Atomic erosion flux inferred via ionizations/photon (S/XB) method¹
 - Emission intensity ~ erosion rate
 - Normalized to ion flux to measure Y_C
- Measurements of Y_C are close but slightly above model calculations
 - Likely due to ELMs (not included in model)

¹ADAS, www.adas.ac.uk

Promising advanced SiC composite prototypes were also tested

W-SiC functionally-graded composite

- good compatibility between
 W & SiC
- Goal: 100% W at surface →
 100% SiC at coating interface
- fabricated via physical vapor deposition
- layer thickness ~ 10 μm

SiC_f-SiC composite

- improved toughness over monolithic SiC [1]
- fabricated via chemical vapor infiltration over a fiberreinforced matrix

EDS line scan of W-SiC cross-section

Property		W	SiC
CTE (@ 300 K)	[10 ⁻⁶ K ⁻¹]	4.3	3.8
Structural operating temperatures	[K]	800-1300	550-1050

[1] Katoh, JNM, 2014

Significant increases in D retention in W-SiC compared to pristine tungsten likely caused by manufacturing-induced defects

- Exposure of W-SiC samples in PISCES resulted in minimal surface degradation
- Surface concentration remained
 > 70% W up to 10²⁵ m⁻² fluence
- Total D retention in W-SiC was
 - ~ 10 \times higher than in W or SiC
 - most D trapped at W-specific intrinsic defects
 - improvements in fabrication may reduce intrinsic trap density

Sample Total D retained (m⁻²) W-SiC 2.0 × 10²¹ SiC 4.4 × 10²⁰ W 1.6 × 10²⁰

SEM micrographs of surface (before vs. after)

Desorption: W-SiC vs. W vs. SiC

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the Effect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material

• Promising Plasma-Facing Materials

- Tungsten
- Silicon Carbide
- Liquid Metals
- Wrap-Up and Final Thoughts

Solid metals suffer from the "reshaping problem" while liquid metals are "self healing"

Neutron damage is problematic in solid materials

• Damage characterized by dpa = "displacements per atom"

- ITER: ~0.7 dpa lifetime
- Reactor: ~100 dpa lifetime
- Problems cause by neutrons:
 - Embrittlement
 - Increased T retention
 - Degrades thermal conductivity (lowers acceptable heat flux)
 - Activation

- Liquid metals have no "structure" -> no neutron damage
 - Note: the underlying solid material will still be damaged
 - LMs **separate** the heat flux problem from neutron damage effects!

Liquid metals provide potential additional channels for heat dissipation

- Flowing liquid dissipates heat via convection
- "Vapor shielding"
 - LM evaporation produces neutral vapor cloud
 - Plasma-neutral interactions lead to heat dissipation
 - Recently demonstrated experimentally for liquid Sn¹

¹van Eden PRL 2016

Issue 1: The liquid metal needs to stay on the wall (1/2)

- Liquid metal surfaces can become MHD unstable (R-T or K-H)
 - Leads to droplet ejection -> video
 - Macroscopic ejection events can dominate erosion
 - Seen on DIII-D, HT-7, EAST, Magnum-PSI
- LM surface can be stabilized using porous targets
 - Essentially a LM "sponge"
 - Capillary forces counter-act jxB ejection forces

Issue 1: The liquid metal needs to stay on the wall (2/2)

 Very strong LM evaporation could lead to unacceptable core contamination levels

- Could widen the temp. window for liquid Li divertor

Issue 2: Tritium Extraction

- In the D-T fuel cycle, high tritium burn fraction required to maintain TBR > 1
- In ITER, safety concerns limit T inventory to 700 g
- Liquid Li retains H/D/T isotopes in up to a 1:1 ratio
 - Some filtration systems must be developed
 - "Just an engineering issue"
- Other liquid metals (Sn, Ga, etc.) only retain 1-2% hydrogenics
 - Comparable to solid metals
 (W, Mo, etc.)

52/60

Capillary-porous system (CPS) targets prevent droplet ejection

• Liquid Li CPS system installed on Frascati Tokamak Upgrade (FTU) in Frascati, Italy

- No droplet ejection or confinement degradation observed
- Demonstrates technological feasibility for liquid Li PFCs
 Abrams/PMII/SULLecture

NSTX Evaporated Li experiments and Liquid Lithium Divertor (LLD)

Abrams/PMLII/SULLLecture

- Improved plasma performance with Li evaporative wall conditioning on graphite
- LLD experiment attempted in 2012 for full liquid Li divertor...

Stored Energy in NSTX With Lithium +20%Without Lithium 001 (kJ) 50 2009 Deuterium \mathbf{H} $B_{T} = 0.45T$ Average = 0.9 MA+std. dev $NBI = 4.0 \pm 0.2 MW$ 200 100 300 W_{MHD}^{<EFIT>} (kJ)

- ...had some problems
 - 3/4 modules failed due to shorted heater leads
 - Liquid Li could not be maintained w/o plamsa heating
- Plus side: No droplet, macroscopic Li ejection

Jaworski NF

2013

Flowing liquid Li concepts tested in HT-7

SLiDE concept (U. Illinois)

- Thermal gradients drive currents at the junction between two materials (thermoelectric effect)
- Liquid Li flows in ~1 mm wide trenches
- Previously demonstrated in benchtop experiments -> video
- No droplet ejection observed on HT-7

Strip heater

Outline

- How to Evaluate Plasma-Materials Interactions
 - Characterize the Edge Plasma
 - Observe the Effect on the Wall Material (Spectroscopy)
 - Perform "Post-Mortem" Analysis of the Material
- Promising Plasma-Facing Materials
 - Tungsten
 - Silicon Carbide
 - Liquid Metals

• Wrap-Up and Final Thoughts

- PMI is probably the 2nd most critical physics issue to be solved for fusion reactors (after disruptions)
- Tungsten remains the leading candidate PFC material but a suitable W alloy for reactors has yet to be developed
 - We need a back-up plan: SiC or liquid metals
- The U.S. Community must develop a cohesive road map to address outstanding PMI physics gaps for a fusion pilot plot!