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– Tungsten
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– Liquid Metals

• Wrap-Up and Final Thoughts
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Edge plasma conditions diagnosed via Langmuir probes 
and Thomson scattering

Courtesy of D. Pace

Related to Te

Voltage

Current

Ion Flux
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5𝑛𝑛𝑒𝑒

𝑘𝑘𝑘𝑘𝑒𝑒
𝑚𝑚𝑖𝑖

𝐼𝐼~exp
𝑒𝑒𝑒𝑒
𝑘𝑘𝑇𝑇𝑒𝑒

• Langmuir probes
– Conductive probe contacts plasma
– Collected current varies with voltage 

due to sheath effects
– Ion flux, ne, Te can be extracted
– Fast (~1-10 kHz), but can only measure 

at the edge
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Flux surfaces

Scattering 
Volume

Scattering length
≈9m

m

Laser diameter 
≈3mm

Z

R

≈45°

Laser

View chord

Lens

Courtesy of D. Eldon

• Langmuir probes
– Conductive probe contacts plasma
– Collected current varies with voltage 

due to sheath effects
– Ion flux, ne, Te can be extracted
– Fast (~1-10 kHz), but can only measure 

at the edge

• Thomson Scattering
– Spectroscopic measurement of 

photon-electron collision
– Extract ne,Te from line height/width
– Slow (50-100 Hz), but measure 

anywhere in the plasma

Edge plasma conditions diagnosed via Langmuir probes 
and Thomson scattering
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Divertor Heat Flux characterized via IR thermography

• Utilize Planck's Law to relate IR 
emission to temperature:

• Apply thermal model to relate 
temperature to heat flux*:

𝐵𝐵𝜆𝜆 𝑇𝑇 ~
2ℎ𝑐𝑐2

𝜆𝜆5
1

exp ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝑇𝑇 − 1

"Gray-body" 
radiation

Surface 
temperature

Wave-
length

𝑇𝑇 𝑡𝑡 = 𝑇𝑇0 + 𝑞𝑞
4𝛼𝛼𝑡𝑡
𝜋𝜋𝑘𝑘𝑡𝑡𝑡

1/2

Initial surf. 
temperature

Thermal 
conductivity

Heat flux
(MW m-2)

Thermal 
diffusivity

*1-D semi-infinite 
slab

Planck's law Power spectrum vs. 
Temperature and Wavelength
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Divertor Heat Flux characterized via IR thermography

HF measured by Langmuir 
probes generally agree 
reasonably well with IR

𝑞𝑞∥ ≈ 𝛾𝛾𝑇𝑇𝑒𝑒𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠/sin𝜃𝜃
𝛾𝛾 ≈ 7

Sheath heat flux 
factor

𝜃𝜃 ≈ 1.5°
Field line angle

Barton Phys Scr 2017

• Utilize Planck's Law to relate IR 
emission to temperature:

• Apply thermal model to relate 
temperature to heat flux*:

𝐵𝐵𝜆𝜆 𝑇𝑇 ~
2ℎ𝑐𝑐2

𝜆𝜆5
1

exp ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝑇𝑇 − 1

"Gray-body" 
radiation

Surface 
temperature

Wave-
length

𝑇𝑇 𝑡𝑡 = 𝑇𝑇0 + 𝑞𝑞
4𝛼𝛼𝑡𝑡
𝜋𝜋𝑘𝑘𝑡𝑡𝑡

1/2

Initial surf. 
temperature

Thermal 
conductivity

Heat flux
(MW m-2)

Thermal 
diffusivity

*1-D semi-infinite 
slab
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• L-mode: Poor confinement implies broad 
plasma profiles

– Scale lengths O(several cm)
– No fast time constants -> fast time 

response not crucial

• H-mode: Better confinement means 
narrower profiles

– Fast time constants (ELMs) implies need 
for fast time response

– Typically average over end portion of 
ELM cycle

• What if LP and TS are not consistent?

Divertor plasma profiles look very different in L-mode and H-mode 
(ELM vs. inter-ELM)

Typical Jsat and Te profiles in DIII-D 
L-mode discharges

Guterl PET 2017

Distance from strike point (cm)
-2            0         2         4         6         8        10
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Jsat is more "trusted" from LPs. 
Actual ion flux measurement 

at the target

Ion flux

Pr
ob

e

𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5𝑛𝑛𝑒𝑒 𝑘𝑘𝑇𝑇𝑒𝑒/𝑚𝑚𝑖𝑖

Te is more "trusted" from TS. 
Local measurement, not 

averaged over a flux tube

Density can be "backed out" 
based on Jsat and Te

• L-mode: Poor confinement implies broad 
plasma profiles

– Scale lengths O(several cm)
– No fast time constants -> fast time 

response not crucial

• H-mode: Better confinement means 
narrower profiles

– Fast time constants (ELMs) implies need 
for fast time response

– Typically average over end portion of 
ELM cycle

• What if LP and TS are not consistent?

Divertor plasma profiles look very different in L-mode and H-mode 
(ELM vs. inter-ELM)
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• Edge Localized Modes
– Periodic bursts of energetic plasma

expelled from the core
– "Spikes" observed on heat flux 

measurements
– Big problem for reactors!

• Current understanding of ELMs is still somewhat 
empirical

– "Free streaming model": detachment of a pedestal 
plasma filament into SOL

Plasma conditions in H-mode oscillate due to ELMs

ELM power

ELM energy

ELM decay time
(fitting param.)

Mach number

ELM 
power 
flow
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Plasma conditions in H-mode oscillate due to ELMs

Empirical model for ELM power deposition 
agrees reasonably well with data

Eich JNM 2009

• Edge Localized Modes
– Periodic bursts of energetic plasma

expelled from the core
– "Spikes" observed on heat flux 

measurements
– Big problem for reactors!

• Current understanding of ELMs is still somewhat 
empirical

– "Free streaming model": detachment of a pedestal 
plasma filament into SOL

ELM power

ELM energy

ELM decay time
(fitting param.)

Mach number
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• Langmuir probes run into
power supply current limits
– Results in "back off" on bias
– Do not capture peak of Jsat

– Cannot fit exponential to
I-V curve to infer Te

Intra-ELM plasma conditions are difficult to diagnose

ELM event

Measured probe 
current (-1x)

Probe bias voltage

Discharge time (ms)
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ne (1020 m-3)

0

25

50

-2 0 2 4 6 8

Te (eV)

ELM time (ms)

0

1

2

DTS indicates strong ne 
increase during ELMs, but 
similar (or decreased) Te

Abrams APS 2016

• Langmuir probes run into
power supply current limits
– Results in "back off" on bias
– Do not capture peak of Jsat

– Cannot fit exponential to
I-V curve to infer Te

• TS measurement frequency is
comparable to ELM frequency
– No information on ELM evolution
– Can use "coherent averaging"

if a number of similar ELMs exist

Intra-ELM plasma conditions are difficult to diagnose



15/60 Abrams/PMI II/SULI Lecture

• How to Evaluate Plasma-Materials Interactions
– Characterize the Edge Plasma
– Observe the Effect on the Wall Material (Spectroscopy)
– Perform “Post-Mortem” Analysis of the Material

• Promising Plasma-Facing Materials
– Tungsten
– Silicon Carbide
– Liquid Metals

• Wrap-Up and Final Thoughts

Outline



16/60 Abrams/PMI II/SULI Lecture

• Eroded wall material becomes 
an impurity in the plasma

– Impurities emit line radiation via 
electronic transitions

Measuring PMI Involves Using Spectroscopic Diagnosis 
of the Edge Plasma

Tungsten

𝚪𝚪𝑾𝑾𝟎𝟎

Tungsten

Φ𝑊𝑊0

W0 Line Radiation

Φ𝑊𝑊+
W+ Line Radiation

• Impurities in the plasma 
measured with spectroscopy

𝚪𝚪𝑾𝑾𝟎𝟎 =
𝑆𝑆
𝑋𝑋𝑋𝑋

�
0

∞
𝚽𝚽𝑾𝑾𝟎𝟎𝑑𝑑𝑑𝑑

𝑆𝑆
𝑋𝑋𝑋𝑋

≡
“Ionizations per photon”
“Inverse photon efficiency”

• S/XB coefficients typically 
obtained from databases

– e.g., ADAS: www.adas.ac.uk
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What spectroscopy diagnostic you need depends on 
what you want to measure

Diagnostic Spectral
resolution

Spatial 
resolution

Time
resolution

Spectrometer Can be 
very high 
(<0.1 nm)

Requires 
multiple 
chords. 
O(cm) 
spot sizes

Limited by 
read-out
time, 
integration 
time. 
typically ms-s

Filterscopes 1-10 nm 
wavelengt
h region 
(Bandpass
filter)

Requires 
multiple 
chords. 
O(cm) 
spot sizes

Very fast, 
limited by 
digitizers, 
typically 
kHz-MHz

Filtered 
camera

1-10 nm 
wavelengt
h region
(Bandpass
filter)

2D 
image, 
mm-cm,
depends 
on lens

Slow 
cameras (30 
Hz) are 
cheap,
Fast cameras 
(kHz-MHz) are 
expensive

Abrams NF 2017
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• Czerny-Turner design enables 
high spectral resolution
– Distinguish closely neighboring lines
– Zeeman splitting -> BT, LOS
– Doppler shifts/broadening -> vi, Ti

– Careful line identification possible

Grating-based spectrometers measure intensity vs. 
wavelength

Abrams IEEE-TPS 2017

Typical Spectrum acquired with DIII-D High-Resolution Spectrometer
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• Light directly coupled to photo-
multiplier tubes (PMTs)
– Bandpass filters only transmit a certain 

narrow wavelength range
– ELM-resolved information!

• Caveat: Signals includes both line of 
interest and background

Filterscopes provide very high time resolution over an 
integrated spectral range

Line of 
interest

Background light

Abrams IEEE-TPS 
2017
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Filterscopes provide very high time resolution 
over an integrated spectral range

Two-filter method 
developed on DIII-D to 

separate signal from 
background

• Light directly coupled to photo-
multiplier tubes (PMTs)
– Bandpass filters only transmit a certain 

narrow wavelength range
– ELM-resolved information!

• Caveat: Signals includes both line of 
interest and background
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Abrams IEEE-TPS 
2017

Two-filter method 
developed on DIII-D to 

separate signal from 
background

Filterscopes provide very high time resolution 
over an integrated spectral range
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• Camera images divertor surface through bandpass filter

• Background subtraction can be performed from a local 
source
– Assume toroidal symmetry
– Subtract ROI toroidally offset as background

Filtered imaging provides spatially resolved light 
intensities

CCD 
Camera Bandpass

filter mirro
r

Windo
w
Flange

Long focal
length lens

(To plasma 
light source, 
~3 m optical 
path)

Divertor surface (light 
source)

Air (Outside DIII-D)

Vacuum (in DIII-D)
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• W/Mo re-deposition inferred from post-mortem analysis 
on DIII-D
– DIII-D DiMES experiments 
– Small 1 mm spot (R~0) vs. large 1 cm spot (R~?)
– Decent agreement with ERO code,

assuming 1.8% C concentration

Measurements of W prompt re-deposition can be 
conducted via post-mortem analysis

R. Ding
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1. Refractory Metals (W and W-alloys)
 Acceptable operational temperature window, >800 °C
 Difficult/expensive to fabricate, machine

2. Ultra High-Temperature Ceramics (UHTCs)
 Graphite, SiC, other carbides, diborides, MAX phase…
 High temp. (> 1000 °C), maintain strength under high neutron fluence
 Fiber composites generally at lowest TRL (joining, hermeticity)

3. Liquid Metals
 Primarily Lithium, but also Sn, Sn-Li Eutectics
 “Self-healing:” separates the material problem from PMI problem
 Most difficult chemically and technologically

Three Classes of Materials are Envisioned to Have 
Potential as Plasma-Facing Materials for Fusion

Bolt FED 1993
Snead JNM 2000

In
cr

ea
sin

g 
TR

L
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• CFC divertor in ITER eliminated due to concerns 
about cost + T retention via C co-deposition

• "Be wall + W divertor" planned for entire ITER lifetime
– Divertor replacement?

W was chosen as ITER divertor material due to low T 
retention, good thermal properties, & low sputter yield

Ro
th

 P
PC

F 
20

08

• W sputters significantly less than low-Z materials 
like C or Be
…but one W atom in core is much 
worse than a C/Be atom

• W has highest melting temp of any solid material 
(except C)
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Thermal excursion of monoblock

ITER/DEMO W monoblock design tends to fail after several 
hundred thermal cycles

FE mesh of an ITER monoblock

end of loading end of cooling

Stresses in x direction for a heat flux of 20 MW/m2

FE analysis: 
deep cracking

in ITER monoblock

due to plastic deformation and recry-
stallization resulting in brittle failure during

cool- down after only few hundreds of cycles

G. Pintsuk et al. FED 88 (2013) 1861

M. Li, FED 101 (2015) 1

Neu PPPL Seminar
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Toughening of Tungsten Fiber Composites (Wf/W)

[based on Evans, J Am
Ceram Soc 73, Nb. 2,
1990]

Toughening by
mechanism analogous 

to ceramic-fiber-
reinforced ceramics

Stress redistribution by 
local energy dissipation 
acting behind cracks

Pseudo-ductile
Tungsten!

27

Fracture surface
of Wf/W after 
Charpy impact
test
H. Gietl et al.,
Fus. Eng. Design 124 
(2017) 396

1Riesch Phys Scr 2014Wf/W fabricated at FZ Julich1

Neu PPPL Seminar
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f
Stress-Strain diagramm of W /W tensile tests

H. Gietl et al.,
Fus. Eng. Design 124 (2017) 396

Monotonic tensile test -> no catastrophic failure
• Low cycle fatique testing

10000 cycles at 60/70/90/100% (each) of maximum stress without failure

Wf/W samples confirm:
• Charpy impact tests

->ductile behaviour of fibers

Increasing the toughness of W:

• Production of dense Wf/W by CVD
• Development of optimized fabrics and

continuous deposition

Wf/W shows good performance in mechanical testing

Neu PPPL Seminar
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• Incorporation of dispersoids can 
improve resistance of W to n-damage, 
recrystallization at high temperatures.

• Ongoing material development at 
Penn State, University of Utah, Tohuku 
University [1-3].

Dispersoids can help to stabilize W microstructural features,
improve resilience to neutron damage

• Most testing to date with “single effect” laboratory experiments

• Planned expts. will use DIII-D/DiMES to expose specimens to combined high
heat and particle flux

Above: SEM/FIB images showing microstructure of
dispersoid strengthened W specimens [2]

1 H. Kurishita, S. Matsuo, H. Arakawa, et al., Phys. Scr. T159 (2014) 014032.
2 R. D. Kolasinski, D. A. Buchenauer, R. P. Doerner,et al.,  Ing. J. Ref. Met. Hard Mat. 60

(2016) 28.
3 E. Lang, H. Schamis, N. Madden, et al, J. Nucl. Mater. 545 (2021) 152613.
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Dispersoid strengthened W properties and
experimental results:
• Near-surface blistering during H exposure

nearly eliminated up to ~1025 D/m2

Laboratory testing of dispersoid-strengthened W shows
promising results

ITER W

3
2

W / TiO2
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Dispersoid strengthened W properties and 
experimental results:
• Near-surface blistering during H exposure

nearly eliminated up to ~1025 D/m2

• Improved resistance to grain growth during 
high-temperature annealing up to 1800 oC

Laboratory testing of dispersoid-strengthened W shows
promising results

defect annealing in ITER W

RT 1400 oC 1700 oC

grain growth in ITER W
RT 1400 oC 1700 oC

[1] A. Manhard, K. Schmid, et al., J. Nucl. Mater. 415 (2011) S632.
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Dispersoid strengthened W properties and 
experimental results:
• Near-surface blistering during H exposure

nearly eliminated up to ~1025 D/m2

• Improved resistance to grain growth during 
high-temperature annealing up to 1800 oC

Laboratory testing of dispersoid-strengthened W shows
promising results

Above: Comparison of grain growth in IGW vs.
different dispersoid strengthened W materials

E. Lang, H. Schamis, N. Madden, et al, J. Nucl. 
Mater. 545 (2021) 152613.
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Observations:
• Near-surface blistering during H exposure 

nearly eliminated up to ~1025 D/m2

• Improved resistance to grain growth during 
high-temperature annealing up to 1800 oC

• Moderately higher (2-3 x) hydrogen isotope
retention / permeation
– However most trapped inventory can be 

liberated from the surface at low 
temperature (< 300 oC) [Barton et al., Nucl.
Mater. Energy (2019)]

Laboratory testing of dispersoid-strengthened W shows
promising results

Above: Hydrogen permeability through 
different W materials, c.f. D. A. Buchenauer et 
al., Fusion Eng. Design (2016).

3
5
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Outline
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Silicon 
Carbide

?

?

• Graphite and Tungsten are the most 
studied, but are not ideal…

SiC Poses a Number of Potential Advantages as a Plasma-Facing 
Component (PFC) for Next-Step Devices

PFC Property
(not comprehensive)

Graphite Tungsten

Chemical 
Erosion*

Physical 
Erosion*

Melting/
Leading Edges

Impurity
Radiation

• Graphite largely not considered 
reactor-relevant due to hydrogen 
retention and low neutron tolerance

• Silicon Carbide could reduce C 
erosion and co-deposition without 
the drawbacks of high-Z materials

– Next generation SiC/SiC composites2

has stimulated renewed interest
– Physical and chemical erosion 

properties need to be better 
understood -> ongoing research

*Ultimate limit on T retention (via co-deposition)1

1Doerner NME 2019
2Katoh JNM 2014
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SiC coatings fabricated at General Atomics via chemical vapor 
deposition (CVD) were used for plasma bombardment testing

• SiC samples were fabricated by General Atomics
• Chemical vapor deposition on ATJ graphite substrate

– crystalline β-SiC coating
– layer thickness = 100-200 μm

• Pristine composition: 50 ± 5 % Si/50 ± 5 % C
• Sample geometries: Buttons, DiMES caps, DIII-D tiles

SiC-coated samples

SEM micrographs of SiC surface

DiMES caps

Buttons

DIII-D Tiles
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500 K

Total retention: SiC vs. W

[1]

D retention via implantation in SiC measured in PISCES, found to 
be relatively similar to tungsten

• SiC samples exhibited one major
desorption peak ~ 900 K

– Somewhat higher than W (~600 K)
– More similar to peaks in pure Si & graphite

Normalized desorption flux spectra

5e23 m-2

100 eV
500 K

• W and SiC samples exposed to same 
conditions in PISCES-E linear plasma device

• Total retention in SiC ~2x higher than W 

Sinclair NME 2021
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Heat-treated SiC samples exhibited slightly lower overall 
D retention due to annealing of intrinsic defects

Bringuier, 2018

Total retained D (LIBS/LAMS)
• DIII-D divertor (DiMES) exposure conditions

– L-mode, Fluence ~ 2.5 × 1024 m-2

– Average D+ energy ~ 100 eV

• D retention quantified via Laser-Induced
Breakdown Spectroscopy/Laser Ablation
Mass Spectrometry (LIBS/LAMS)

– Erosion/pulse (LAMS) ~ 0.3 μm

• Higher heat treatment temperature
lowers overall D retention

– adding heat anneals intrinsic defects that can trap D
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SiC samples exhibited 4× decrease in carbon chemical erosion 
compared to graphite samples; chemical erosion of Si not observed

• CD emission band (430 nm) serves as
proxy for chemical erosion of carbon

– D/XB method used to approximate
Yc

chem from CD band

• Yc
chem from SiC is 4× lower than that from

graphite on average
– estimated Yc

chem values from graphite are
consistent with Roth formulation [1]

• Si II, C II peaks not observed
– Te in PISCES too low for significant ionization

Average emission intensity near 
CD band

50 eV
500 K

Yc
chem vs. Ei,D+ for SiC & graphite

[1] Roth, 1999, JNM

[Roth, JNM, 1999]
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Measured Si Erosion from SiC in DIII-D
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DIII-D Data

Spectroscopically Inferred Si Erosion from SiC is Significantly 
Lower than for Pure Silicon in DIII-D

• Atomic erosion flux inferred via 
ionizations/photon (S/XB) method1

– Emission intensity ~ erosion rate
– Normalized to ion flux to measure 𝒀𝒀𝑺𝑺𝑺𝑺

• Data closer to pure Si due to enrichment
• Model slightly under-estimates Si erosion, 

likely due to ELMs (not included in model)
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1ADAS, www.adas.ac.uk

Spectroscopic Signal from SiC-DiMES Sample

Pure Silicon
300 °C

Silicon Carbide 
Erosion Model
(fC = 0.02)

600 °C
300 °C
25 °C

Pure SiC
300 °C
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1ADAS, www.adas.ac.uk
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Spectroscopic Signal from SiC-DiMES Sample

• Atomic erosion flux inferred via 
ionizations/photon (S/XB) method1

– Emission intensity ~ erosion rate
– Normalized to ion flux to measure 𝒀𝒀𝑪𝑪

• Measurements of 𝒀𝒀𝑪𝑪 are close but slightly 
above model calculations

– Likely due to ELMs (not included in model)

Spectroscopically Inferred C Erosion from SiC is Significantly 
Lower than for Pure Graphite in DIII-D
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Promising advanced SiC composite prototypes were also tested

Property W SiC

CTE 
(@ 300 K)

[10-6 K-1] 4.3 3.8

Structural 
operating 

temperatures

[K] 800-1300 550-1050

• W-SiC functionally-graded 
composite

– good compatibility between 
W & SiC

– Goal: 100% W at surface 
100% SiC at coating interface

– fabricated via physical 
vapor deposition

– layer thickness ~ 10 μm
• SiCf-SiC composite

– improved toughness over 
monolithic SiC [1]

– fabricated via chemical 
vapor infiltration over a fiber-
reinforced matrix [1] Katoh, JNM, 2014

EDS line scan of W-SiC cross-section
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Significant increases in D retention in W-SiC compared to pristine 
tungsten likely caused by manufacturing-induced defects

Sample Total D 
retained (m-2)

W-SiC 2.0 × 1021

SiC 4.4 × 1020

W 1.6 × 1020

100 eV
1025 m-2

Desorption: W-SiC vs. W vs. SiC

• Exposure of W-SiC samples
in PISCES resulted in minimal
surface degradation

• Surface concentration remained
> 70% W up to 1025 m-2 fluence

• Total D retention in W-SiC was
~ 10× higher than in W or SiC

– most D trapped at W-specific
intrinsic defects

– improvements in fabrication
may reduce intrinsic trap
density

SEM micrographs of surface (before vs. after)
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• How to Evaluate Plasma-Materials Interactions
– Characterize the Edge Plasma
– Observe the Effect on the Wall Material (Spectroscopy)
– Perform “Post-Mortem” Analysis of the Material

• Promising Plasma-Facing Materials
– Tungsten
– Silicon Carbide
– Liquid Metals

• Wrap-Up and Final Thoughts

Outline
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Solid metals suffer from the "reshaping problem" 
while liquid metals are "self healing"

Plasma-facing material

Incident heat and 
particle flux

Melt crater

Melt leading 
edge

Solid metal PFM

Melt crater deepens, leading edge 
grows every time surface is re-melted

Liquid metal PFM

Returns to equilibrium via surface tension

Graphite PFM

Leading edge is "machined away" by 
plasma flux
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• Damage characterized by dpa = "displacements per atom"
– ITER: ~0.7 dpa lifetime
– Reactor: ~100 dpa lifetime

• Problems cause by neutrons:
– Embrittlement
– Increased T retention
– Degrades thermal conductivity 

(lowers acceptable heat flux)
– Activation

• Liquid metals have no "structure" -> no neutron damage
– Note: the underlying solid material will still be damaged
– LMs separate the heat flux problem from neutron damage effects!

Neutron damage is problematic in solid materials
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• Flowing liquid dissipates heat via 
convection

• "Vapor shielding"
– LM evaporation produces neutral 

vapor cloud
– Plasma-neutral interactions lead to 

heat dissipation
– Recently demonstrated experimentally 

for liquid Sn1

Liquid metals provide potential additional channels for 
heat dissipation

Incident heat flux vs. velocity

vLM

q0

1van Eden PRL 2016
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• Liquid metal surfaces can become MHD unstable (R-T or K-H)
– Leads to droplet ejection -> video
– Macroscopic ejection events can dominate erosion

• Seen on DIII-D, HT-7, EAST, Magnum-PSI

• LM surface can be stabilized 
using porous targets
– Essentially a LM "sponge"
– Capillary forces counter-act 

jxB ejection forces

Issue 1: The liquid metal needs to stay on the wall (1/2)
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Rayleigh-Taylor stability analysis
for liquid metal surfaces

https://www.youtube.com/watch?v=oDuj8BBBnmM


51/60 Abrams/PMI II/SULI Lecture

• Very strong LM evaporation could lead to unacceptable 
core contamination levels

• D uptake in liquid Li may help
– LiD formation appears to 

strongly suppress erosion
– Could widen the temp. window for liquid Li divertor

Issue 1: The liquid metal needs to stay on the wall (2/2)
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• In the D-T fuel cycle, high tritium burn fraction required to 
maintain TBR > 1

• In ITER, safety concerns limit T inventory to 700 g

• Liquid Li retains H/D/T isotopes 
in up to a 1:1 ratio
– Some filtration systems 

must be developed
– "Just an engineering issue"

• Other liquid metals (Sn, Ga, etc.)
only retain 1-2% hydrogenics
– Comparable to solid metals 

(W, Mo, etc.)

Issue 2: Tritium Extraction
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• Liquid Li CPS system installed on Frascati
Tokamak Upgrade (FTU) in Frascati, Italy

• No droplet ejection or confinement 
degradation observed

• Demonstrates technological feasibility for 
liquid Li PFCs

Capillary-porous system (CPS) targets prevent droplet 
ejection
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• Improved plasma performance with Li 
evaporative wall conditioning on graphite

• LLD experiment attempted in 2012 for full 
liquid Li divertor…

NSTX Evaporated Li experiments and Liquid Lithium 
Divertor (LLD)

Stored Energy in NSTX 

…had some problems
3/4 modules failed due to shorted 
heater leads
Liquid Li could not be maintained 
w/o plamsa heating

• Plus side: No droplet, macroscopic Li 
ejection
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• SLiDE concept (U. Illinois)
– Thermal gradients drive currents at the junction between two materials 

(thermoelectric effect)
– Liquid Li flows in ~1 mm wide trenches
– Previously demonstrated in benchtop experiments -> video
– No droplet ejection observed on HT-7

Flowing liquid Li concepts tested in HT-7

SLiDE during HT-7 plasma 
shot
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• How to Evaluate Plasma-Materials Interactions
– Characterize the Edge Plasma
– Observe the Effect on the Wall Material (Spectroscopy)
– Perform “Post-Mortem” Analysis of the Material

• Promising Plasma-Facing Materials
– Tungsten
– Silicon Carbide
– Liquid Metals

• Wrap-Up and Final Thoughts

Outline
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• PMI is probably the 2nd most critical physics issue to be solved 
for fusion reactors (after disruptions)

• Tungsten remains the leading candidate PFC material but a 
suitable W alloy for reactors has yet to be developed
– We need a back-up plan: SiC or liquid metals

• The U.S. Community must develop a cohesive road map to 
address outstanding PMI physics gaps for a fusion pilot plot!

Final Thoughts
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