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contributions on ME-SXR




My first diagnostic: 1D visible
WhO Am I bremsstrahlung imaging
» senior R&D Scientist at ORNL in the Fusion diagnosfic on Pegasus (2002)

Energy Division in the Fusion Measurements
and Integration Group

- undergraduate work on Pegasus at w
~ PhD work on Alcator C-Mod at |I|jI

— before joining ORNL | was a Lecturer at
THE UNIVERSITYW in the United Kingdom

e building and operating diagnostics on
tokamaks has been a focus of my career

— VUV and SXR spectroscopy to characterize
core impurity concentrations and fransport

— UV/visible spectroscopy for studying impurity
induced divertor detachment

- bolometers for measuring radiated power
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This Presentation May Not be Very Useful....

* the goal of this talk is not to fully educate you on how to infer
plasma properties from observations & make great diagnostics

— textbooks: I.H. Hutchinson “Principles of Plasma Diagnostics”

— bi-annual conferences (HIPD, ECPD) produce hundreds of manuscripts
that detail how innovations in technology are applied to diagnostics

e iInstead, the focus is how the role of diagnostics for
magnetically confined fusion has evolved and is evolving

— why are diagnostics necessary and what are some best practicese

- how diagnostics play a role in making progress in fusion and how has
technology impacted that role (ex: on x-ray spectroscopy)e¢

- how are measurements and diagnostics going 1o evolve as we push
toward the first generation of fusion pilot plantse

e ...aONd play a game
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http://www.cvent.com/events/2020-high-temperatures-conference/event-summary-316fe078c3894ef5ab725d6bbdf69334.aspx
https://www.ipfn.tecnico.ulisboa.pt/ECPD2019/welcome.html

“Your Eyes Can Deceive You, Don’t Trust Them...”

« human senses are lll-evolved to understand plasmas
— sight: eye [390-700 nm], plasma [below 1 nm o 10’s of MHz (10’s of m)]
— tfouch: hot coffee [~75 degC], cold detaching divertor [~30000 degK]
— sound: ear [20 Hz — 20 kHz], electron/ion plasma frequency [920/2 GHZ]
- faste: please don’t eat plasma
- smell: ...ozonez?
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Considerations When Designing and Using Diagnostics

e (A) understand the fundamental mechanism and approximations
you're using to generate information from the plasma

- example: contrast magnetic sensors vs. Langmuir probes

e (B) understand that information is altered as its fransmitted
through the plasma (absorption, scattering) and to sensors

e (C) understand the relevant device physics that occurs when
converting information to ‘volts’ and then do digital format

SPECIAL ISSUE ON PLASMA DIAGNOSTICS FOR MAGNETIC FUSION
RESEARCH (12 chapters about fusion diagnotsics)

https://www.tandfonline.com/toc/ufst20/53/2
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Example: Photodiode Measurement (Your Plasma Eye)

f--_-'—m aging lens digitizer

photodiode
transmission .
fiber

amplifier

(—

vacuum
boundary

e (A) generation of information from the plasma
— local emission combines many plasma properties, line-integration

e (B) fransmission of information
- A-dependent signal attenuation that evolves (damage, coatings)

e (C) conversion of information

- A-dependent sensitivity in semi-conductor, gain-bandwidth curves
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Measurements Can Trigger Paradigm Shifts

“Measurement of the Electron Temperature by Thomson Scattering in
Tokamak T3" Peacock, ef al. Nature 224 488 (1969)

https://www.euro-fusion.org/news/detail/detail/News/success-of-t-3-

° ClCHmS Of h|gh ’CE > ]O mes, Te > ] kev |n breakthrough-for-tokamaks/

https://www.iter.org/newsline/102/1401

T-3 ‘TOkO mo k’ OT |AEA ]968 https://royalsocietypublishing.org/doi/pdf/10.1098/rsbm.2011.0012
gam— ‘ - /. A — —
) v ' ..““/.' :' . >

« UKAEA team demonstrated Thomson
scattering on Zeta (pinch) and were
iInvited to Novosibirsk to independently
confirm the results

o confirmation of the results in 1969
(Nature, APS-DPP) led to the worldwide §
focus on the tokamak concept

This concept is being applied in the U.S.
through ARPA-E ‘capability teams’
partnering with private fusion companies

https://www.ornl.gov/news/ornl-team-builds-
portable-diagnostic-fusion-experiments-shelf-items
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The Language We Use is Based on Measurements

« research on divertor ‘detachment’ is 2.0 er Chenr e
ongoing at tokamaks worldwide in order ;| -n seaing |02 scaling
to find solutions excessive heat and T
o . £ B 00 .-
parficle flux for ITER, pilot plants S (T
N .t:". ’ md")"qg"_ %o,
e the basic physics of detachment is still 2 ot 2%
the subject of debate, and discussions 84 gl seaies | 0 scaling
are sfill very phenomenological S10l __
& L o?ff_.ﬁfepdbo o
o Langmuir probes measurements of ., R T
interpreted into I';, define the onset of A T cwegal
defachment as a ‘roll-over’ from & jol " = 'DOD’ 7 | ~rd scaing
expectation as a function of density x o7 ’ e
see: G. Matthews “Plasma detachment from divertor 2 0 3 — '5' R N —
targets and limiters” J. Nucl. Mat. 220 104 (1995) Line averaged density (1019m-3)
Y QAKRIDCE https://doi.org/10.1088/0029-5515/38/3/303
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The Language We Use is Based on Measurements

e research on divertor ‘detachment’ is parallel
ongoing at tokamaks worldwide in order et Inferoretations
to find solutions excessive heat and based on heat flux
particle flux for ITER, pilot plants midplane measurements

made by IR, probes

e the basic physics of detachment is still
the subject of debate, and discussions
are still very phenomenological

e Langmuir probes measurements of .,
interpreted into I';, define the onset of

attached

detachment as a ‘roll-over’ from /N
expectation as a function of density A R .8
;J&TUaUy fully distance
» this language starts becomes more S— T along target
complicated and confusing as we make ey

more observations
$ OAK RIDGE https://doi.orq/10.1088/0029-5515/55/5/053026
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Technology Has Reduced the Barrier to Make Measurements

« decades of advancement in sensor tfechnology, lasers, efc.
have pointed to other resource limitations that limit our abllity

to validate models and improve understanding

/
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Ex: Impact of Hybrid Pixel Detectors on X-Ray Spectroscopy

principles of bent crystal x-ray spectfroscopy have been known

for > 100 years and used in plasma physics for > 50 years

e single line-of-sight x-ray spectrometers
could resolve Br, v,, and T,, but needed to
be scanned over the plasma shot-to-shot

- ex: C-Mod (Rice 1997) up/down asymmetry
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Ex: Impact of Hybrid Pixel Detectors on X-Ray Spectroscopy

principles of bent crystal x-ray spectfroscopy have been known
for > 100 years and used in plasma physics for > 50 years

e single line-of-sight x-ray spectrometers
could resolve Br, v,, and T,, but needed to
be scanned over the plasma shot-to-shot

- ex: C-Mod (Rice 1997) up/down asymmetry

e an innovative hybrid pixel detector
invented at the Paul Scherrer Institut (and
spun-off info Deciris Lid) enabled low-
noise, X-ray imaging crystal spectroscopy

Pilatus Detector

¢=——p Vertical height in plasma

Ar on C-Mod
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Technology Has Made What Took ‘Days’ take ‘Shots’

principles of bent crystal x-ray spectfroscopy have been known
for > 100 years and used in plasma physics for > 50 years

e single line-of-sight x-ray spectrometers
could resolve Br, v,, and T,, but needed to
be scanned over the plasma shot-to-shot

- ex: C-Mod (Rice 1997) up/down asymmetry

e an innovative hybrid pixel detector
invented at the Paul Scherrer Institut (and
spun-off info Deciris Lid) enabled low-
noise, X-ray imaging crystal spectroscopy

« XICS adllowed intra-shot scans in n, and
shot-to-shot scans in |, By, full op. space
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XICS was used to measure a/L;; for multi-
scale gyrokinetics sim. and nTt in W7-X
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https://doi.org/10.1038/s41567-018-0141-9
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One Success Can Lead to Further Innovative Ideas

e O feature of the Pilatus detector

%

used to calibrate the sensor before
shipping was repurposed by PPPL
scientists fo create an x-ray imaging
camera that can multiple colors

~100,000 pixels

Photon counting
circuit in each pixel

Bump .
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o

Digital
read-out
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from L. Delgado-Aparicio (PPPL)
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One Success Can Lead to Further Innovative Ideas

e O feature of the Pilatus detector
used to calibrate the sensor before
shipping was repurposed by PPPL
scientists fo create an x-ray imaging
camera that can multiple colors

« PPPL+UW (MST) worked further to
demonstrate the calibration and
quantitative interpretation of the
multi-energy soft x-ray (ME-SXR)
pinhole imaging technique

— T, profiles on MST

Toroidal direction

0 100 200 300 400
Radial direction

Toroidal direction

e U.S. team is now exporting this

0 100 200 300 400 0 100 200 300 400

measurement approach 1o EU Radial direction
devices and extending it fo HXR https://doi.org/10.1063/1.4964807

https://doi.org/10.1088/1748-0221/14/09/C09009
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What is Currently Limiting Our Ability to Make Measurements??
 imited budgets ($$9%)

- Just because technology exists doesn’'t mean that DOE will pay for it
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- Just because technology exists doesn’'t mean that DOE will pay for it

e port space limitations (stress, H&CD systems & TF/PF magnets)
— unfortunate hysteresis in allocation of port space
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What is Currently Limiting Our Ability to Make Measurements??
 imited budgets ($$9%)

- Just because technology exists doesn’'t mean that DOE will pay for it

e port space limitations (stress, H&CD systems & TF/PF magnets)
— unfortunate hysteresis in allocation of port space

e DIlI-D and NSTX-U are DOE User Facilities and need to be
flexible enough to support a wide range of experiments which
requires a versatile instrumentation set installed simultaneously
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What is Currently Limiting Our Ability to Make Measurements??
 imited budgets ($$9$)

- Just because technology exists doesn’'t mean that DOE will pay for it

e port space limitations (stress, H&CD systems & TF/PF magnets)
— unfortunate hysteresis in allocation of port space

* DIlI-D and NSTX-U are DOE User Facillities and need to be
flexible enough to support a wide range of experiments which
requires a versatile instrumentation set installed simultaneously

e iImprovements in our ability to model and simulate plasmas
have driven need to measure smaller spatial and time scales 1o
observe characterizes of plasma turbulence
- tokamak programs + dedicated“Measurement Innovation” funding

continue support new ideas
&OAKRIDGE

National Laboratory




Motivation for Measurements Must Evolve

Science Reactor
Experiments Prototypes

measurements will get progressively difficult to make

e measurements in tfoday’s experiments provide data needed for
risk-basked decision making in designing tomorrow’s devices

that risk will never be zero, no matter what!

e Will making a measurement result in a change of behaviore
- change an in-progress designe be used in feedback controle

« do we need to observe something directly when we can make
Inferences with model predictions from other datae

¥ OAK RIDGE
National Laboratory




The Future: Present Devices versus ITER

e Minimize risk for the diagnostics that have to work for ITER

e systems engineering driven design with substantial prototyping
effort fo ensure that requirements can be met

- ) @ Two Great Examples from HIPD 2018
TIP Beam Path -
| Tememona \ e | ¢ fUll-scale toroidal interferometer and
@ L polarimeter built & tested on DIII-D
DIll-D Table g 7/ hitps://qip.scitation.org/doi/10.1063/1.503746

Enclosure “

Piezo
Mirror
)

+s | * R&D on steady-state magnetic Hall
sensors, to be tested on WEST
https://doi.org/10.1063/1.503887 1
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The Future: ITER versus a Demonstration Reactor

° |'|'E R iS SJ”” fU N d ame ﬂTCI | |y q scie nce ITEI:ttp:://doi.;Jrq/;O.10165/i.5flasengdes.201I7.05.038
. . ans 10 nave cnanneils
experiment and so it needs @ prans =
C O m p re h e nSIVe & Ve rSOTI | e SeT Of l;LS;e?i:E(‘;IErsl)elS for spectroscopicjand radiation measurements (without limiter
d iO g n OS Tl C S Diagnostic method and target Number of Integration approach
channels
N SRD5,5 |DM UlD VJ R8F5 IS ‘l. ] 3 pOg.eS Of | Radiation power (core) 2x 2% 10 20 in Eq. Port
requirements for the 85 diagnostics _ — — 201n.ver. por
ay spectroscopy (core * in E.P.
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It's needs for control
— evolve into a facet of ‘plant [&C’

For more info: W. Biel, et al. "Diagnostics for plasma control — from ITER to DEMO”
¥, OAK RIDGE https://doi.org/10.1016/j.fusengdes.2018.12.092 & R. Boivin TEC Paper

ional Laboratory
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A Community Driven Plan for Measurements and Diagnostics
for Fusion Science and Technology

FST Program Recommendation - E in the Recent CPP Report

“Establish a program for developing diagnostics, measurement, and
control techniques that can be used in a reactor environment”

1. Develop critical in situ and combined effect diagnostics for
fusion materials research and plasma science needed to
validate models, which includes new capabilities on existing
confinement devices as well as on smaller “lab-scale”
experiments

2. Initiate the R&D needed to solve diagnostic survivability
challenges (materials & electronics) imposed by the nuclear
condifions expected throughout a fusion pilot plant facility

&OAK RIDGE

National Laboratory



https://sites.google.com/pppl.gov/dpp-cpp/home

A Community Driven Plan for Measurements and Diagnostics
for Fusion Science and Technology [continued]

3. Develop nuclear environment compatible plasma diagnostics
and engineering instrumentation needed for control and safe
operation of an FPP and benchmark these new instruments
on available facilities

4. Develop advanced control techniques to maintain high-
performance burning plasmas without disruptions or other
MQAJOr exXcursions



A Community Driven Plan for Measurements and Diagnostics
for Fusion Science and Technology [continued]

3. Develop nuclear environment compatible plasma diagnostics
and engineering instrumentation needed for control and safe
operation of an FPP and benchmark these new instruments
on available facilities

4. Develop advanced control techniques to maintain high-
performance burning plasmas without disruptions or other
MQAJOr exXcursions

Measurements and Diagnostics also identified as a ‘Cross-Cut’
with actions that benefif both fusion energy and plasma science

Diagnostic collaboratfions are a prime opportunity for private-
public partnerships (INFUSE), allowing decades of experience fo
help industry make fast progress in testing fusion concepts



https://infuse.ornl.gov/

Summary: Where Have We Been?

e specialized diagnostics have co-evolved alongside magnetic
confinement fusion concepts to overcome the limitations of our

feeble primate senses
— diagnostic measurements have and continue to play an important role
INn demonstrating the potential of different concepfts

e Improvements in technology from outside of the fusion
community can quickly revolutionize the status-quo

* while the ‘cutting-edge’ continues to move, there remain
plasma features that we cannot resolve and information that is

needed in order to validate our best plasma models

&OAK RIDGE
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Summary: Where Do We Need to Go (Now — Reactor)

e prove a scientific hypothesis for a peer-reviewed publication —
Inform risk-based decision for next-step devices

« make high resolution, wide coverage measurements — observe
only critical pieces of data that cannot be otherwise inferred

e bespoke diagnostics that can be flexibly configured — robust
sensors that are not accessible for routine maintenance

- non-nuclear - OMG neutrons!
e perform inter-shot analysis — rely on real-fime conftrol

e require advanced degrees to operate and maintain — can be
staffed by a frained technical workforce

Your generation will have the challenge and the
excitement of leading this tfransition!



