Plasma Astrophysics

Ellen Zweibel
University of Wisconsin

Who I Am, How I Got Here

- Drawn to astronomy by the wonder of celestial objects.
- Came to love the idea of a Universe ruled by natural law.
- Majored in math at U. Chicago to avoid social awkwardness of all male physics labs & study groups.
- Two wonderful mentors: Patrick Palmer & Peter Vandervoort who saw a needle of scientific potential in a haystack of teenage angst.

Encountered This Book in College

- Classical mechanics, E&M, stat mech etc. all came together in plasma physics.
- Went to Princeton to study General Relativity, stayed for the plasma physics.

Space and Astrophysical Plasmas

Space Plasmas

- Magnetosphere
 - Plasma controlled by the magnetic field of Earth
- Heliosphere
 - Solar wind, solar system

Plasmas that can be directly probed, strongly influence life on Earth.

Astrophysical Plasmas

Stars – their formation, evolution, deaths, explosions, mergers

- Accretion disks
- Galaxies their formation, evolution, supermassive black holes formation & activity
- Galaxy clusters
- Intergalactic medium

Plasmas that are probed remotely & have wide range of properties

Lab Experiments relevant to both!

Cross Cutting Processes

- Magnetic reconnection: converts magnetic energy to plasma energy, changes magnetic topology
- Particle acceleration: a small fraction of particles are electromagnetically energized & don't follow Maxwell-Boltzmann statistics
- **Dynamos:** Magnetic induction converts flow energy to magnetic energy; ultimately responsible for the magnetic fields we see in planets, stars and galaxies (great question in cosmology).

The Plan for Today

- A short course on galaxies
- A short course on cosmic rays

Follow the energy
See where the plasma physics
comes in

Galaxies

= 3000 light years)

• $10^{11} M_{\odot}$ – Mostly stars

Optically visible disk

- Few % gas, mostly H
- Central black hole, $10^7 \, \mathrm{M}_{\odot}$

about 10 kpc across (kpc

• Massive dark matter halo, $10^{12} \, \mathrm{M}_{\odot}$

M31: NASA Astronomy Picture Of the Day

Breakdown by Components

Cosmic ray electrons

Gas heated by

supernova explosions

Dust heated by starlight

Starlight obscured by dust.

Cosmic ray protons

NASA Composite

The Flow of Energy

Large scale gravitational field

Gravitational binding energy of stars

Supernova remnant 1006 (NASA)

Energy budget of a *core* collapse supernova:

- 10⁵³ ergs of gravitational binding energy: GM²/R
- 99% is emitted as neutrinos; freely escapes.
- 1% (10⁵¹ ergs) absorbed by surrounding medium
 - Shocked gas is heated & set in motion
 - About 10% goes to a miniscule fraction of particles which become relativistic cosmic rays

A More Active Example: "Starburst" Galaxy M82

Polarized infrared emission from
Magnetically aligned interstellar dust shows
The magnetic field of M82 being dragged
Out of the disk by the wind

Galactic Magnetic Fields

Cosmic Source of Atmospheric Ionization (known since 18th century)

Was tried previously with Eiffel Tower, but not tall enough.

- 1911-1912; Victor Hess ascended to 5 km in balloons & showed ionization increases with height.
- To check whether the Sun was the source, he went up again during a solar eclipse.
- Awarded Nobel Prize for this work in 1936

But it Was the Work of Many...

And many more!

C. Jake Waddington

Cosmic Ray Energy Spectrum

- Mostly ions
- U_{cr} ~ 1 eV cm⁻³
 - Similar to magnetic, thermal, & radiation energy densities
- About one interstellar particle in 10⁹ is a cosmic ray.

Composition

- Overabundance of Li,
 Be, B interpreted as spallation of CNO nuclei
 - --> grammage
 - --> age
- Lack of elements formed in supernovae
 - -> accelerated from interstellar medium

Isotropy

Very small amplitude anisotropies at TeV+ energies

Figure 3: Celestial CR intensity map for different representative CR energies: (a) 4 TeV; (b) 6.2 TeV; (c) 12 TeV; (d) 50 TeV; (e) 300TeV. Data were taken during 1997-2005. The vertical color bin width is 2.5×10^{-4} in (a) - (d), while it is 7.25×10^{-4} in (e) for different statistics, all for the relative CR intensity.

Inferred Properties

- Cosmic rays are accelerated from the interstellar medium in one time events that produce an E⁻² spectrum.
- GeV cosmic rays are confined to the Milky Way for $^{\sim}$ 2 10^{7} yr and scattered with a short mean free path λ $^{\sim}$ 1 pc.
- About 10% of the (non neutrino) energy in supernova explosions required for steady state.

Orbits of Cosmic Rays Depend on Their Energy: $r_g = E/(ZqB)$

1 parsec (pc) = 3.26 lt yr

Average cosmic ray gyro-orbit

Where are Cosmic Rays Accelerated?

"Hillas Plot" (from F. Aharonian)

- A particle can't be accelerated beyond the energy at which its gyroradius equals the size of the system.
- The maximum energy is the energy reached after the lifetime of the system.

How are Cosmic Rays Accelerated?

Diffusive Shock Acceleration

Termination Shock of the Galactic Wind: Here we Run into the Time Constraint

Work by Chad Bustard, soon to be a postdoc at at the Kavli Institute at UC Santa Barbara, & Cory Cotter, now a grad student at U. Chicago working on cryogenic detectors.

Best current guess: UHECR come from blazars, a type of active galaxy.

What do the less flashy, worker bee cosmic rays do in galaxies?

Galactic Winds

Numerical simulation of gas density in a star forming galactic disk, seen edge on. Cosmic rays are injected where stars form (Ruszkowski, Yang, EZ 2017)

Left panel: Cosmic rays are frozen to the gas. Right panel: Cosmic rays stream at v_A relative to the gas.

Parker's Instability: Gas Falls, Magnetic Fields & Cosmic Ray Rise

Fig 2.—Sketch of the local state of the lines of force of the interstellar magnetic field and interstellar gas-cloud configuration resulting from the intrinsic instability of a large-scale field along the galactic disk or arm when confined by the weight of the gas.

Density Evolution in Parker's Instability (Chad Bustard & Evan Heintz, also a PhD student)

Heating & Temperature

EH,CB, EZ

Radiative cooling is not included here.

Conclusions

- I hope you learned something about cosmic rays.
- You will never run out of problems in plasma astrophysics.
- The system you study will never be shut down or cancelled.
- You will encounter some of the most extreme conditions and forms of matter in the Universe.
- Thank you.

