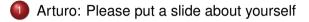
					The Future
--	--	--	--	--	------------


A Brief Introduction to Stellarators

A. Bader UW-Madison

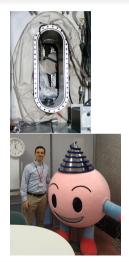
SULI Summer School 2020

A. Bader Stellarators

Who		The Future

- 2 What is a stellarator?
- Why should we use stellarators?

How do we build a quality stellarator?

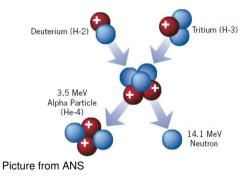


The present and future of stellarator research

Who				The Future
•	0000000	000	0000000	0000000

A career in plasma physics can start here!

- Undergrad: Cooper Union (Mech. Engineering)
- 2003 NUF/SULI program at PPPL
- 2D phase: PhD from MIT in Applied Plasma Physics working on Alcator C-Mod tokamak
- 3D phase: PostDoc to research staff at UW-Madison working on stellarators

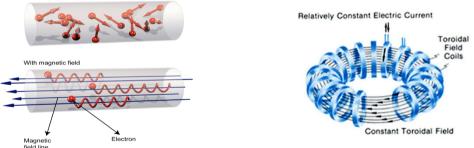


	What 0000000			The Future
	Arturo: Please put a slide at	oout yourself	Tokamak	
2 \	What is a stellarator?			
3 \	Why should we use stellarat	tors?	North State	
4	How do we build a quality st	ellarator?	Stellarator	
5 7	The present and future of st	ellarator research		

What		The Future
000000		

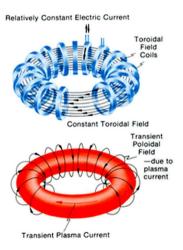
Nuclear fusion requires large $nT\tau$

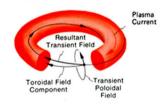
- *n* = Density: how likely nuclei collide
- *T* = Temperature: Ensures nuclei have enough energy
- τ = Confinement time: Make sure particles are not lost before collisions



Magnetic Confinement Fusion tries to find better ways of improving, τ , the confinement of the plasma using magnetic fields

Using magnetic fields to confine plasma

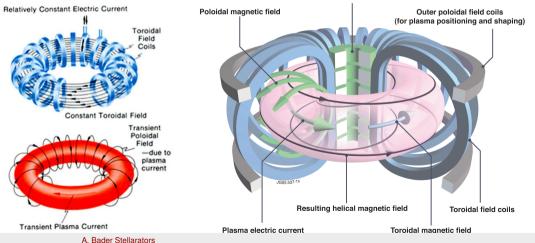

No magnetic field



- Magnetic fields prevent motion perpendicular to a field, but allow parallel motion
- Confinement attempt 1: Make field lines into circles!

Who What	Why	How	The Future
0 00 C	000 000	0000000	0000000

Why we need rotational transform



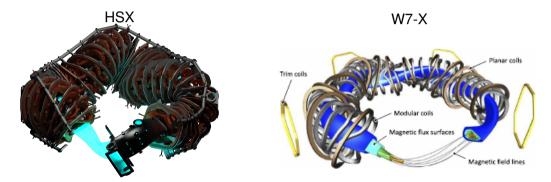
- With only toroidal fields, plasma will drift right out of the machine and into the wall
- Need a field in the other (poloidal) direction
- Rotational transform: $B_{
 m pol}/B_{
 m tor} \propto \iota \propto 1/q$

A. Bader Stellarators


Tokamaks use plasma current to generate rotational transform

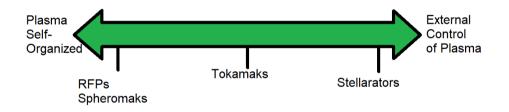
Inner poloidal field coils (Primary transformer circuit)

Who Wha	at Why	y How	v The	Future
0 000		b ooc	000000 000000	000000


Stellarators use coil shapes and arrangements to generate transform

Pictures from S. Yamamoto IAEA 2012 "Simple" stellarators combine circular coils with helical coils

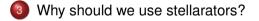
	What			The Future
0	0000000	000	00000000	0000000


Stellarators use coil shapes and arrangements to generate transform

W7-X picture from Wolf PoP 2019 Stellarators can be built with complicted 3D coils

What		The Future
000000		

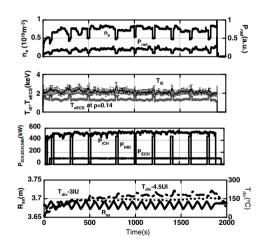
Stellarators try to externally control the plasma as much as possible


- Self-organized: Use plasmas self-generated fields to confine itself as much as possible. Make the plasma work for you!
- Externally controlled: Make the confinement fields independent of plasma behavior. Plasmas cannot be trusted!

	Why 000	The Future

Arturo: Please put a slide about yourself

2 What is a stellarator?


- 4 How do we build a quality stellarator?
- 5 The present and future of stellarator research

	Why	The Future
	000	

Stellarators do not rely on plasma current for confinement

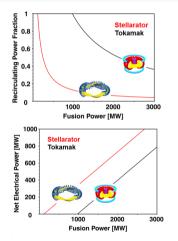
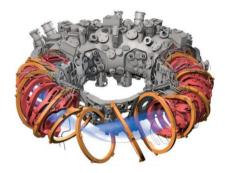

- Inherently steady state
- Long pulse operation possible
- LHD can operate a 24 million degree Kelvin plasma for over half an hour
- No current-driven disruptions or runaway electrons!

Figure from Kumazawa Nuclear Fusion 2006

Low recirculating power - improve reactor payout



- Tokamak central solenoid can only provide current drive for so long
- Driving plasma current in steady-state is very inefficient
- Removing current drive allows for smaller scale devices that produce net power

Zohm Nuclear Fusion 2017 A. Bader Stellarators

	Why oo●	The Future

What are the difficulties?

 3D nature makes it more difficult to design and construct

- Still learning how to design the best possible stellarator
- Opportunities exist for tailoring the configuration to the exact reactor needs
- No axisymmetry makes simulation and analysis more difficult

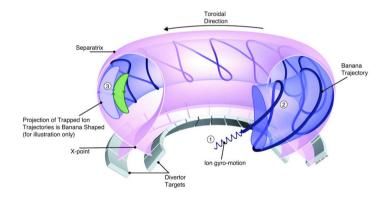
Klinger IAEA 2018

Video of W7-X construction:

https://www.youtube.com/watch?v=CJ_OBoEs3uU

	How 00000000	The Future

Arturo: Please put a slide about yourself

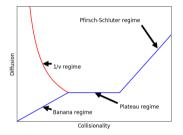

- 2 What is a stellarator?
- Why should we use stellarators?

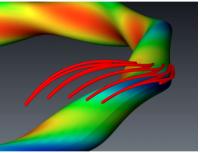
4 How do we build a quality stellarator?

The present and future of stellarator research

	How	The Future
	0000000	

In axisymmetry precessional drifts are in the toroidal direction

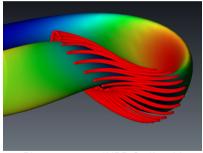

Picture from Briesemeister SULI 2015


"Trapped" particles reflect on the high field side making "banana" orbits

 In addition particles undergo "precessional" drift, which moves them in the toroidal direction

			How	The Future
0	000000	000	0000000	00000000

Unoptimized stellarator can have drift losses

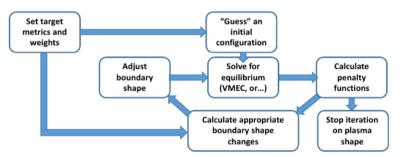

Picture courtesy if IPP-Greifswald

- With no symmetry direction, precessional drifts may cause particles to leave flux surfaces
- This can create large "neo-classical" collisionless losses thought to be a showstopper for stellarators

	How	The Future
	0000000	

With optimization, trapped particles can be confined

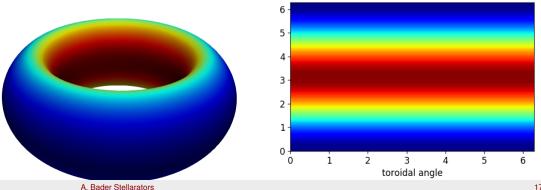
- The net drift for a particle of a flux surface is called the "bounce-averaged radial drift"
- With effort it is possible to choose a shape such that some trapped particles are confined: bounce-averaged radial drift = 0
- Focus mainly on deeply trapped particles since they are the biggest problem



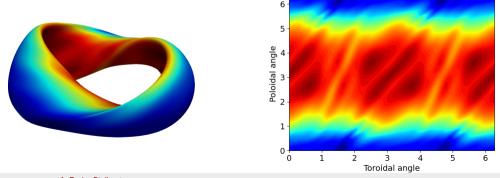
Picture courtesy if IPP-Greifswald

			How	The Future
0	000000	000	0000000	00000000

So you want to design a stellarator?

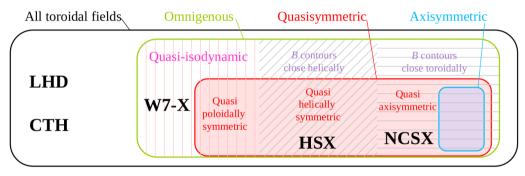

- Define targets to optimize and set weights for targets
- Solve for equilibrium, evaluate target functions
- Perturb R, Z in an optimization scheme

Axisymmetric devices have all drift orbits confined


Calculations can show that a coordinate system exists where bounce-averaged drifts depend only on magnetic field strength (Boozer coordinates)

Can approximate axisymmetry even with non-axisymmetric shapes


If magnetic field strength is axisymmetric in Boozer coordinates, bounce-averaged drifts are eliminated and particles are confined: Quasi-axisymmetry (ex. from Henneberg 2019)


Can produce same good properties in helical systems

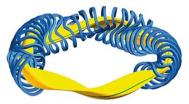
Quasihelical symmetry is when magnetic field strength is symmetric in the helical direction (ex. HSX)

	How	The Future
	0000000	

The zoology of stellarators

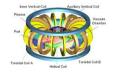
Landreman PhD Thesis 2011

		The Future


Arturo: Please put a slide about yourself

- 2 What is a stellarator?
- Why should we use stellarators?
- 4 How do we build a quality stellarator?
- 5 The present and future of stellarator research

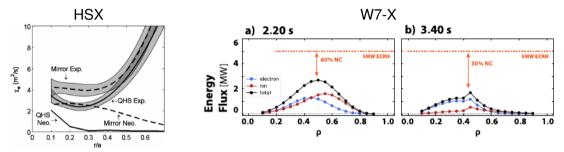
Stellarator experiments are an international effort


W7-X (Optimized QO) *R*=5.5 m, *a*=0.53 m, *B*=3T

HSX (Optimized QH) R=1 m, a=0.15 m, B=1 T

Heliotron-J (Unptimized) R=1.2 m, a=0.15 m, B=1.5 T

LHD (Unptimized Torsatron) R=3.5 m, a=0.6 m, B=3T


TJ-II (Unoptimized Heliac) R=1.5 m, a=0.22 m, B=1 T

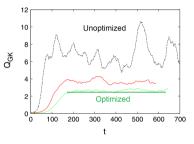
A. Bader Stellarators

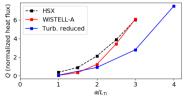
Optimized stellarators show reduction of "neo-classical" transport

- Optimization has reduced neo-classical transport in optimized stellarators HSX and W7-X
- Improving transport further requires reducing turbulent transport

Canik Phys. Rev. Let. 2007, Pablant Nuc. Fus. 2020

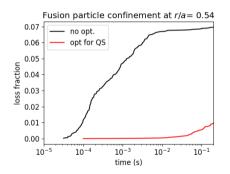
Key areas of stellarator physics going forward


- Reduce both turbulent and neo-classical transport at the same time
- Make sure the plasma can exhaust heat without destroying the walls (day 6)
- Confine energetic particles, like those produced from fusion reactions
- Make sure impurities don't build up in the plasma
- Design simpler machines that are easier to construct

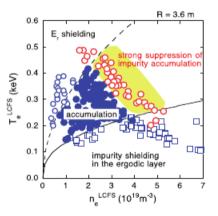

		The Future
		0000000

Can we design a device optimized for turbulent transport?

- Different stellarators have different turbulent transport properties
- Non-linear heat flux too expensive for an optimization loop
- Several possibilities for how to reduce turbulence
 - Target growth rates, how "powerful" the transport channel is
 - Target correlation times, mitigate powerful channels by moving energy to others


Mynick Phys. Rev. Let. 2010, Bader submitted to J. Plas. Phys.

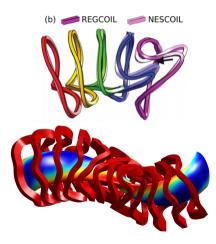
Must confine fusion products to heat the plasma



- Must confine fusion products long enough so that they deposit energy in plasma
- 3.5 MeV fusion alpha particles can damage the wall if lost immediately
- Having good thermal particle confinement does not guarantee good energetic particle confinement
- Stellarators must be optimized to confine both thermal and energetic particles

Who	What	Why	How	The Future
⊙	0000000	000	0000000	○○○○○●○○

All fusion devices need to expel impurities from the plasma


- Fusion products must be expelled after energy has been deposited
- Heavy ions from wall structures must be prevented from entering
- Theory predicts that stellarators should accumulate impurities (bad) but experiments show different behavior (good!)

Nakamura Nuclear Fusion 2017

Can we build better and simpler coils

- New codes such as REGCOIL (Landreman 2017) and FOCUS (Zhu 2018) leverage computational power to simplify coils
- · Can expand coils in non-sensitive areas
- Can mix different coil types
- Loosen engineering tolerance by stochastic optimization
- Next step: bringing coils into the overall optimization loop

				The Future
0	000000	000	0000000	0000000

Stellarators: convincing those sneaky plasmas to behave

- Stellarators are magnetic confinement devices that use shaped coils with 3D magnetic fields to confine the plasmas
- Through optimization, stellarators like HSX and W7-X can confine thermal particles well
- Improved methods of optimization allow for substantial improvements in performance