Computational Frameworks in Fusion and Plasma Physics

Sterling Smith¹

¹General Atomics

2020 PPPL Introduction to Fusion Energy and Plasma Physics Course June 24, 2020

Personal background

Do not reinvent the wheel

Give back to the community

What is OMFIT?

OMFIT solves common computer usage issues

My mother took me staraazina

In Dominican Republic, I was inspired to find a more steady source of electricity

S.P. Smith - PPPL Intro Course - June 24, 2020

Life happens along the way

5

The "best" computer language depends on the application

- I started dabbling with qbasic¹ in high school (late 1990's)
- I took a C++² class as an undergraduate
- The Utah State physics program used ${\tt MathCAD}^3$ and ${\tt Maple}^4$ for undergraduate instruction
- In graduate school, I first learned about unix⁵/linux⁶
- My 1st year project required IDL⁷ for data processing
- My 2nd year project introduced me to python⁸
- The graduate laboratory class exposed me to ${\tt MatLab}^9$
- I wrote my thesis code in Fortran90¹⁰, with python pre- and post- processing
- At DIII-D, I took over and improved some analysis routines written in IDL (ZIPFIT)
- I later took over maintenance of the ONETWO code a half million lines of Fortran77
- Along the way, I worked to implement the coordination of code running (integrated modeling) via python (IMFIT, then OMFIT¹¹)

Personal background

Do not reinvent the wheel

Give back to the community

What is OMFIT?

OMFIT solves common computer usage issues

Computers have been around for a while now

Initial code recipes have evolved into entire libraries and frameworks

- Numerical Recipes books¹²
- BLAS¹³ and LAPACK¹⁴ Linear Algebra libraries
- BOUT¹⁵ A framework for solving an arbitrary set of equations including parallelization
- hDF5¹⁶/netCDF4¹⁷ A library for storing self-describing data
- MDS+¹⁸ A library for storing data with a client/server interface (most US tokamaks use this)
- OMFIT¹¹ One Modeling Framework for Integrated Tasks More later
- conda¹⁹ Cross-platform package and dependency management
- IMAS²⁰ ITER Integrated Modeling and Analysis Suite

This list is not exhaustive, but rather representative of the types of libraries that are available.

Do your homework and ask around

If you are going to write some code that is more than a few lines long:

- Do a google search
- Do a search on github.com
- Ask your advisor:
 - Have you done something already?
 - Do you know someone that may have done something similar?
 - How would you do it?
- Ask the community the same questions. Here are some communities:
 - NTCC²¹ Started down path of code collection for MFE
 - The AToM project²² is knowledgeable of existing MFE codes
 - The Plasmapy project²³ represents the most modern and open collection of efforts in plasma research
- Use existing input/output standards
 - netcdf 17 , hdf5 16 , yaml 24 , IMAS DD 20 , OpenPMD 25 , namelist 26

Personal background

Do not reinvent the wheel

Give back to the community

What is OMFIT?

OMFIT solves common computer usage issues

Not reinventing the wheel is not enough; feedback is invaluable

- If the documentation is lacking, report it
- If you need help, ask for it
- If you find a bug, report it
- If you figure out how to fix the bug, report it

Short, Self Contained, Correct (Compilable), Example²⁷

Short Cut out all of the extra code that is not causing a problem

 Sometimes this step by itself is sufficient to help you see the solution yourself

Self contained Include any non-public libraries, files, data, or metadata that are necessary to produce the problem

• If on a cluster be sure file permissions allow access

Correct The code provided should work/compile

Example The code should actually demonstrate the problem

When you start writing code, use version control

cvs²⁸ was one of the initial version control systems

- svn²⁹ came along as a replacement for cvs with some improvements for ease of use
- git³⁰ is emerging as the program of choice to track code versions
 - All clones of a git repository contain the whole repository
 - A central canonical version may be hosted at GitHub(.com) or a local GitLab server
 - Branching is easy and cheap
 - GitHub provides code review and continuous integration testing tools

Random thoughts

- Use a package manager conda¹⁹ is my manager of choice
 - The more portable a code is, the more users it will gain
 - The more users it gains, the more contributors it will garner
 - The more contributors it has, the more stable and feature-rich the code will become
- There are no bugs, just unwritten regression tests (see previous talk by Dr. Murphy)
- Get a coding buddy
- Look over someone's shoulder as they work at a computer what shortcuts do they have for working?

Homework: Interact with an open source project on GitHub.com

🕦 Pick a repo

- https://github.com/MFEFormulary/MFEFormulary
- https://github.com/PlasmaPy/plasmapy
- https://github.com/gafusion/OMFIT-source/ ^a
- https://github.com/smithsp/cpsfr
- Open an issue for a feature request or bug
- 3 Clone the repo
- 4 Make some changes on a branch and push it back to GitHub
- 6 Open a Pull Request
- 6 Read the Cathedral and the Bazaar³¹

^aSend me your GitHub username for access

Personal background

Do not reinvent the wheel

Give back to the community

What is OMFIT?

OMFIT solves common computer usage issues

OMFIT is a versatile framework designed to facilitate experimental data analysis and enable integrated simulations

OMFIT was created to fill a gap in the fusion community

- A unified tool for
 - Accessing experimental data
 - Running existing codes
 - Parsing code inputs and outputs
 - Streaming together outputs of one workflow as the inputs of another workflow
 - Collecting community scripts
 - Creating robust GUIs
 - Visualizing results

OMFIT by the numbers since July 2015

- Cumulative graphical sessions: 120,926
- Cumulative commits: 33048
- Cumulative users: 843

- A tool that is
 - Portable
 - Based on a modern language
 - Public
 - Documented
 - Tested

- One Modeling Framework for Integrated Tasks

"A versatile framework designed to facilitate experimental data analysis and enable integrated simulations"

				Start from a new template = None
	10 AUG	0.01.010.0	12.12.12	Initial time (and) = (4.045
	X OMPIT - Build of 16 Oct 2012 , 12:52			End time (sec) = 4.9651
Elle Edit Plot Help				End time (sec) = 4.9651
7 Browser: ONFIT; Kinetic	cEFIT']['ONETWO']['FILES']['statefile']		Console Clear Sfolow Pattern	Maximum number or steps = 400
View 1 View 2 Quick Plot	Figures Scratch Main Settings		[.088.][.18253303.]].MOMARTREAS.][.147"seases.]	Transport equations
3 OMFIT	Content	Data type	('drickhist')	lon density (for every species)
👳 KineticEFIT			['serateh'] ['BeinTethings']	Electron temperature
i ⇔ E¥iff		— OMFITmodule	['Hainfettings'] 'SETUP' 'user']	🗵 Ion temperature
IN FLES	("REQUSIC, "Iffe", "gEQUSIC, "REQUSIC, "REQUSIC, "snap")	OMFITtree	['HainTetLings']['SRTUP']['heme'] ['HainTetLings']]'SRTUP']['tepDir']	C Terridel estation
Þ kEQDSK	FILE: k149231.03191 (26.6KB)	OMFITnamelist	['HainSethings'] 'SETUF' 'werkDir'	Toroidal rotation
D mile	FILE: rNe.bit (1.288)	OMFITnamelist	['Hainisttings'] 'SETUP']['projectaDir']	Current density
			[HainTettings] [HENDIE HENDE] [workDig]	Update profiles with experimental data
D BEQDSK			['Hainfettings'] 'HENOTE_SETUP']('idl_server')	Update ECH with experimental data
p megosk	HLE m149231.03191 (33.4KB)	оми пераях	['HainTettings']]'HEHOTE_SETUP']['Game1']	Lodate NBL with experimental data = NUBLAM
p smap	Hite: em_snap.dat_EPiro3 (956.0bytes)	OMPITNamenat	['Mainfettings']['MDfreeoteLink']['turnel']	Smoothing of deposition of fest particles - 100 (Default)
PLOTS	U	OMPTITIE	class: ['EineticEFIT']] 'SCRIPTS']] 'AineticIterationClass']	Main lan species - d
P GUIS	(Enriger)	OMPTITIE	<pre>class: ['088']['00REPTS']['gkountClass']</pre>	Plain for species = ju
A SETTRASE	[Diff. Mainfall in addamatical bit. (201 Abstac)	OMUTeremeliet	<class 'omtities.="" fileclass'="" state=""></class>	Run ONETWO
P SETTINOS	Hite Mansettingsnameist.bt (301.00ytes)	OMPTIMAMENT	user class object: ['KineticEFIT']['FILES']['iteration_1']['state	.61
nap proties	PLE: EPTIFileg.Oit (807.00908)	- OMETRIAN (A	nner sjene opject: [.082.][.kITE2.]].Bysonp.]	
h Gternéles		- OMERTMORE/CR	user class object: ['005']('FILES')['gksout125'][0.0.0	St Figure 1
b ZPFIToroffas		- OMFITTERALA	<pre><elass 'omtitizee.gksoutclass'=""></elass></pre>	A Los Bratiliaria Saleta factor
b SCRPTS	CentractProfiles/1	OMFITtree	Command box Execute Clear	
b guis	['proffeeGUr]	OMFITtree	for h in OWITI Kinghistrer II OWERD II FIRE II	a = g133221.01090
D PLOTS	ColotProfiles', blot GA ZP profil	OMFITtree	printiki 16	, — g133221.01000
D PROFILES	FILE profiles.txt (8.0KB)	OMFITnamelist	plat(OMFIT) KINGLIGEFIT 'ONETHO' FILES	- 6133221.01000
D SETTINGS	FILE: MainSettingsNamelist.bt (436.0bytes)	OMFITnamelist		
help	FILE help.bit (22.0bytes)	OMFITTNeASCI		
- ONETWO		— OMFITmodule		1 10 10 10 10 10 10 10 10 10 10 10 10 10
+ FLES	['inone', 'statefile', 'iterdb/]	OMFITtree		
b inone	FILE Inone.A0T (17.2KB)	OMFITnamelist		7 75° source function and tes P' source function
b statefie	FILE statefile_3.191000E+00.nc (523.7KB)	stateffeClass		
terdb	FILE iterdb (246.5KB)	OMFITTNeASCI	-13	
D TEMPLATES	Einone.template', 'none.nfreya.template', 'none.nubea	m. OMFITtree		
D SCRIPTS	['ONETWOconvertifERDIF, 'ONETWOsetupProfiles', 'ONET	acom/intree	-10	
D GUIS	[ONETWOGUT]	OMFITtree		
RI.				
Variables descriptions Show hid	dden nodea 🖼 Show data typea	Project saved as JUse	simeneghinDrapbox/pycode/DM/I/T/projecta/kineticE/IT_DK5.pp 12 14 14	18 20 22 00 02 88 00 08 18 "08 02 04 08 08 1 (9,
_		_	v lost of mine	ket tool will
				20

https://omfit.io O. Mengghini, S. Smith, et al. Nuclear Fusion, **55** 083008 (2015)

OVFT - One Modeling Framework for Integrated Tasks

Integrated Modeling Framework

 Enables data exchange among different components and coordinates their execution in complex workflows

2 Lightweight & pure Python

- Remote execution of interactive/batch jobs
- Installs & runs anywhere: public/private, cluster/laptop

8 Free-form tree data structure

- Support for most fusion-relevant data formats
- Does not exclude use of standard data structures, such as IMAS (ITER Integrated Modeling and Analysis Suite)

Interactive and graphical or scripted

- Accelerate most time consuming tasks: develop, setup, visualize, share

5 Version control and community

- Grow at scale cheaply and remain focused

OMFIT is installed on many fusion public clusters and accesses data from many tokamaks around the world

- ITER
- GA/DIII-D
- NERSC
- MIT
- PPPL/NSTX
- EPFL/TCV

- CCFE/JET/MAST
- ITM-Gateway
- IGI-CNR/RFX
- IPP-CA/COMPASS
- MPI-IPP/ASDEX-U

- WEST
- ASIPP/EAST
- SWIP/HL2A/HL2M
- NFRI/KSTAR
- CFETR

OMFIT is actively used for current research At least 54 presentations in the last APS DPP Conference

5 invited, 14 orals, 1 miniconference, 34 posters

Kriete	BI2.3	Crocker	BP10.44	Mcclenaghan	PO5.15	
Austin	BP10.3	Xing	BP10.102	Montes	PP10.67	
Weisberg	BP10.4	Sciortino	CO5.11	Holland	PP10.107	
Haskey	BP10.7	Ashourvan	CO7.4	Xie	PP10.110	
Zhao	BP10.8	Pankin	CO7.10	Neiser	PP10.125	
Morton	BP10.9	Houshmandyar	GP10.61	Orlov	PP10.132	
Smith	BP10.10	Knolker	JI2.1	Brookman	TI2.6	
Mckee	BP10.11	Grierson	JO5.2	Samuell	TP10.112	
Truong	BP10.12	Chen	JO5.5	Yu	TP10.117	
G. Wang	BP10.16	Hu	JO5.6	Hong	TP10.118	
Victor	BP10.23	Jian	JO5.11	Nelson	TP10.119	
Park	BP10.24	H. Wang	JO5.15	Zhang	TP10.128	
Ding	BP10.25	Munaretto	JP10.23	Abbate	TP10.136	
Park	BP10.30	Smith	PM8.6	Morosohk	TP10.137	
Yan	BP10.35	Logan	PO5.3	Laggner	UO8.3	
Collins	BP10.37	Ernst	PO5.5	Thome	VI3.4	
Marini	BP10.39	Rea	PO5.7	Casali	YI3.1	
Tang	BP10.43	Bykov	PO5.11	Meneghini	YP10.38	

Personal background

Do not reinvent the wheel

Give back to the community

What is OMFIT?

OMFIT solves common computer usage issues

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive analysis

OMFIT provides access to experimental data and facilitates interpretive analysis

OMFIT can interface with

- MDS+
- SQL
- UDA
- s3
- IMAS (ITER)

OMFIT provides access to experimental data and facilitates interpretive analysis

TRANSP is a free-boundary equilibrium and transport solver, used for analysis of tokamak plasma discharges and for experimental planning

Experimental electron temperature profile vs time

Comparison of predicted neutron rate and total pressure provides constraint for $Z_{\rm eff}$

B. A. Grierson, et al., Fus. Sci. and Tech., 74:101; https://transp.pppl.gov

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive analysis
Arcane input format files	Python classes for parsing and writing broad range of files

OMFIT parses and writes a variety of input and output files

- Fortran namelist
- NetCDF 3/4
- HDF 5
- g,k,a,m eqdsk
- SOLPS
- IPS config
- TGLF
- (c)GYRO
- TGYRO
- pfile
- ONETWO
- TRANSP

- BOUT++
- M3D-C1
- NIMROD
- GENRAY
- TORAY
- FASTRAN
- IDL savefile
- IONORB
- GATO
- GPEC
- JSON
- MARS

OMFIT parses and writes a variety of input and output files

₽:

SOLPS is a fluid code that attempts to solve for the densities and temperatures in the scrape off layer (SOL) given boundary conditions

Example input file:

```
Recycling - PFR side
521 PEFE
    2000 10001
523 1.00000E+00 0.00000E+00
524 FFFT
525
526 FFTFF
    7 1 1 1 1 53 64 0 0
1.00000E+00 1.40000E+02 7.00000E+00 0.00000E+00 2.11100E+0
      000008+00 0 000008+00 0 000008+00 0 000008+00 0 000
                                                                      0 000005+00
            DE+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
       00000E+00 9.00000E+01 0.00000E+00 0.00000E+00 0.00000E+0
534 +
        8 : Recycling - PFR side
535 PPPP
     2000 10001
    1.00000E+00 0.00000E+00
COO PPPT
539
540 FFTFF
                                        an
                                            102
```

OMFIT			Content
SOLPS			
nput.dat	FILE: inp	ut.dat	(34.9kB)
EIRENE input file generated with uinp v.	{	(1)	}
1. Data for operating mode	{	2 (1)	}
2. Data for standard mesh	-{	17 (1)	}
3a. Data for non default standard surfaces	;{	29 (1)	}
3b. Data for additional surfaces	{	46 (1)	}
4. Data for species and atomic physics m	1{	4 (1)	}
5. Data for plasma background	{	12(1)	}
6a. General data for reflection model	{	23 (1)	}
7. Data for primary sources, nstrai strata	{	14 (1)	}
NSTRAI	11		
INDSRC(ISTRA)	[0, 0, 0, 0	, 0, 0, 0,	0, 0, 0,]
ALLOC	0.5		
1 Recycling-Target 1	{	13 (1)	}
2 Recycling-Target 2	{	13(1)	}
3 Recycling-Target 3	{	13 (1)	}
4 Recycling-Target 4	{	13 (1)	}
5 Recycling-PFR side 1	{	13 (1)	}
6 Recycling-PFR side 2	{	13(1)	}
7 Recycling-PFR side 3	{	13 (1)	}
⇒ 1	{	4 (1)	}
NLAVRP	False		
NLAVRT	False		
NLSYMP	False		
NLSYMT	False		
⇒ 2	{	4 (1)	}
NPTS	2000		
NINITL	10001		
NEMODS	6		
NAMODS	1		
⇒ 3	{	10 (1)	}
FLUX	1		
SCALV	0		
IVLSF	0		
ISCLS	0		
ISCLT	0		
ISCL1	0		
ISCL2	0		

OMFIT in-memory parsing provides access to variables in a systematic way In-memory variables can be edited, which

propagates back to the file on disk

. S. Kukushkin, et al. J. Nucl. Mater., 86:2865

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive analysis
Arcane input format files	Python classes for parsing and writing broad range of files
Technical guide of code is too deep for average user	Provide customizable GUIs and tutorials

OMFIT provides easily customizable graphical user interfaces (GUIs) to expose most common settings and workflows in plain English

```
x basic.pv - /tmp/smithsp/OMFIT/OMFIT 2019-10-14 14 02 02 588792/project/objects/f
Eile Edit Format Run Options Window Help
OMFITx.TitleGUI('Basic GUI')
OMFITx.Label('A label, a test image, and a separator')
OMFITx.Label(''.image=OMFITsrc+'/../samples/test image.png')
OMFITx.Separator('Separator')
with OMFITx.same row():
    OMFITx.Entry("OMFIT['entry']", lbl='Freeform Entry',
                  default=1.0. help='A live text entry')
    OMFITx.Button("Press me!", lambda: None)
with OMFITx.same tab('Tab 1'):
    OMFITx.Label('Here I am!')
with OMFITx.same tab('Tab 2'):
    OMFITx.Label('Not here')
OMFITx.ComboBox("OMFIT['combo']", {'1': 'This is option 1'},
                 lbl='Combo Box'. default='1')
OMFITx.ObjectPicker("root['gegdsk']", lbl="G-file",
                     objectType=OMFITgegdsk)
```


OMFIT provides easily customizable graphical user interfaces (GUIs) to expose most common settings and workflows in plain English

NIMROD extended MHD code used to follow acceleration and deconfinement of runaway electrons

OMFIT NIMROD module:

- Generates initial conditions
- Generates restart files in hdf5 format for non-standard NIMROD particle orbit routines
- Visualizes the results

72 hours on 12 nodes on cori: $\sim 30k$ CPU-hours

V.A. Izzo and P.B. Parks, Phys. Plasmas, **24**:060705 C.R. Sovinec, et al., J. Comp. Phys. **195**:355

OMFIT['reOrbit']['GUIS']['reOrbits']	↑ □
Run Plot Compare	
Pick Equilibirum (g-eqdsk file) = "	ile d
Step 1: generate flux-aligned grid	
3D fields (probe-g file) = "' Tra	ee File
Scale 3D field by factor = 20.0	d
Number of Fourier components to retain = 5	d
Step 2: map 3D fields onto grid	
Number of RE obits/processor (*215 procs) = 10	d
Total number of orbits = 2150	
(R,Z,phi) starting points for 4 full orbit plots = array([[1.8, 0.0, 0.0],] [1.95,	0.0, d
Runaway electron energy (MeV) = 1	d
Step 3: generate RE inital conditions	
Total integration time (s) = 1e-05	d
Approximate integration length = 2997.9 m	
Time interval for RE output (s) = 1e-06	d
Step 4: Integrate RE orbits and plot results	

OMFIT provides easily customizable graphical user interfaces (GUIs) to expose most common settings and workflows in plain English

NIMROD extended MHD code used to follow acceleration and deconfinement of runaway electrons

OMFIT NIMROD module:

- Generates initial conditions
- Generates restart files in hdf5 format for non-standard NIMROD particle orbit routines
- Visualizes the results

72 hours on 12 nodes on cori: $\sim 30 \text{k}$ CPU-hours

V.A. Izzo and P.B. Parks, Phys. Plasmas, **24**:060705 C.R. Sovinec, et al., J. Comp. Phys. **195**:355

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive analysis
Arcane input format files	Python classes for parsing and writing broad range of files
Technical guide of code is too deep for average user	Provide customizable GUIs and tutorials
Code only runs at a few loca- tions	Package OMFIT to be portable, and allow remote ex- ecution of arbitrary scripts, even with tunnels or MFA

OMFIT can reach remote servers despite tunnels or multi-factor authentication

If appropriate, OMFIT runs a python library with the same functionality as One Time Password applications such as Google Authenticator

OMFIT can reach remote servers despite tunnels or multi-factor authentication

BOUT++ is a framework for solving general differential equations. Our specific use case is Edge Localized Mode stability.

BOUT++ GUI	↑ □	×		
Server = 'edison'		1		
Parameters Server Settings Run Save Analysis Scan Analysis Input files Reset		ŀ		
Batch run		1		
environment = 'module swap PrgEnv-intel PrgEnv-gnu\nmodule load cray-fftw'		1		
walltime = '00:5:00'				
cores = 512				
queue = 'regular'				
nodes = 22				
batch_command = 'sbatch %s'				
shell = '/bin/bash -l'				
mpi_run = 'srun -n'				
		16		

22 nodes for 30 minutes on edison: 240 CPU-hours

B.D. Dudson, et al., Comp. Phys. Comm. 180:1467

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive
	analysis
Arcane input format files	Python classes for parsing and writing broad range of
	files
Technical guide of code is too	Provide customizable GUIs and tutorials
deep for average user	
Code only runs at a few loca-	Package OMFIT to be portable, and allow remote ex-
tions	ecution of arbitrary scripts, even with tunnels or MFA
Remote visualization of results is difficult	In-situ processing with local rendering

OMFIT offers great visualization (via Mayavi and matplotlib)

GPEC is a suite of codes for calculating magnetohydrodynamic (MHD) instabilities

Shown here is the 3D plasma response to the coils, such as would be applied to suppress edge localized modes (ELMs)

Each user does not have to relearn plotting

N.C. Logan, et al. Phys. Plasmas 20, 122507

OMFIT solves common computing issues

lssue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive
	analysis
Arcane input format files	Python classes for parsing and writing broad range of
	files
Technical guide of code is too	Provide customizable GUIs and tutorials
deep for average user	
Code only runs at a few loca-	Package OMFIT to be portable, and allow remote ex-
tions	ecution of arbitrary scripts, even with tunnels or MFA
Remote visualization of results is	In-situ processing with local rendering
difficult	
Tedious to run scans	Automate parsing inputs, creating directories, plotting

OMFIT automates the parsing of inputs, creating directories, and plotting across scans

The **GYRO** code solves the gyrokinetic equation for the turbulent linear growth rates or nonlinear fluxes given input local parameters

S.P. Smith - PPPL Intro Course - June 24, 2020

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive
	analysis
Arcane input format files	Python classes for parsing and writing broad range of
	files
Technical guide of code is too	Provide customizable GUIs and tutorials
deep for average user	
Code only runs at a few loca-	Package OMFIT to be portable, and allow remote ex-
tions	ecution of arbitrary scripts, even with tunnels or MFA
Remote visualization of results is	In-situ processing with local rendering
difficult	
Tedious to run scans	Automate parsing inputs, creating directories, plotting
HPC results cannot be used di-	Harvest results and build NN
rectly by community	

OMFIT builds databases, then trains machine learning models as method for whole community to benefit from HPC usage

OMFIT has compiled a variety of databases from scans over experimental conditions or simulation parameters and built corresponding neural networks

- Experimental heat flux
- Pedestal height/width
- Bootstrap current
- Turbulence heat flux

OMFIT builds databases, then trains machine learning models as method for whole community to benefit from HPC usage

EPED-1 predicts pedestal height and width given 8 inputs

- Stability evaluated for scans of model equilibria
- The IPS (Integrated Plasma Simulator) framework parallelized the workflow to run on $\sim 760~{\rm CPUs},$ taking $\sim 3~{\rm minutes}$
- EPED-1 was run for a database of $\sim 20k$ existing and future experimental conditions
- EPED results harvested then used for training neural network

P.B. Snyder et al. Phys. Plasmas 16:056118

OMFIT solves common computing issues

Issue	OMFIT solution
Get experimental setup	Access experimental data and facilitate interpretive
	analysis
Arcane input format files	Python classes for parsing and writing broad range of
	files
Technical guide of code is too	Provide customizable GUIs and tutorials
deep for average user	
Code only runs at a few loca-	Package OMFIT to be portable, and allow remote ex-
tions	ecution of arbitrary scripts, even with tunnels or MFA
Remote visualization of results is	In-situ processing with local rendering
difficult	
Tedious to run scans	Automate parsing inputs, creating directories, plotting
HPC results cannot be used di-	Harvest results and build NN
rectly by community	
Code run is part of larger inte-	String together tasks regardless of code run type (local
grated problem	serial or queued remote HPC)
	GENERAL ATOMICS

OMFIT can string together tasks regardless of code run type (local/remote or serial/batch) to perform integrated modeling with experimental validation

The STEP module combines many different physics codes to obtain a self-consistent prediction of core kinetic profiles

- Serial local
 - TGLF
 - NEO
 - TGYRO
- Serial remote
 - ONETWO
 - EFIT
 - STRAHL
- Batch remote
 - EPED

G.M. Staebler, et al. Phys. Plasmas, **14**:055909 E.A. Belli, et al. Plasma Phys. Control. Fus., **51**:075018 J. Candy, et al. Phys. Plasmas, **16**:060704

W.W. Pfeiffer GA-A16178

L. Lao, et al. Nuc. Fus.25:1611

K. Behringer JET-R(87)08

P.B. Snyder et al. Phys. Plasmas 16:056118

OMFIT can string together tasks regardless of code run type (local/remote or serial/batch) to perform integrated modeling with experimental validation

- Self-consistent core, edge, pedestal, impurity simulations of **DIII-D**
- Colors are (0.5 , 1.0 , 1.5) × experimental $\int n_C d\rho$
- The experimental profiles are shown in gray for comparison

OMFIT enables computing usage across fusion topics

- OMFIT streamlines the tedious parts of running existing codes
- OMFIT has a convenient API for accessing remote (even HPC) resources
- OMFIT has a convenient API for creating application specific Graphical User Interaces
- Code sharing is encouraged

- Consult with your advisor to see if OMFIT or plasmapy would be useful for your project. If OMFIT would be useful, do the following:
- Watch the first OMFIT video tutorial
- 3 Determine whether you will be using a public installation or installing a personal copy
- 4 Sign up for <u>GitHub</u>, if not already
- **6** Fill out the OMFIT User Agreement

If you feel that I missed out on some fusion relevant software efforts, please send me more information, and we can be sure to expand the horizons of this topic in the future.

OMFIT Mondays at 11 PT/14 ET https://discord.gg/wJAAFWh PlasmaPy Tuesdays at 11 PT/14 ET https://www.plasmapy.org/meetings/weekly/

References I

- (1) https://en.wikipedia.org/wiki/QBasic.
- (2) https://en.wikipedia.org/wiki/C%2B%2B.
- (3) https://en.wikipedia.org/wiki/Mathcad.
- (4) https://www.maplesoft.com/products/Maple/.
- (5) https://en.wikipedia.org/wiki/Unix.
- (6) https://en.wikipedia.org/wiki/Linux.
- (7) https://www.harrisgeospatial.com/Software-Technology/IDL.
- (8) https://python.org.
- (9) https://www.mathworks.com/products/matlab.html.
- (10) https://en.wikipedia.org/wiki/Fortran.
- (11) https://omfit.io.
- (12) http://numerical.recipes/.
- (13) http://www.netlib.org/blas/.

References II

- (14) http://www.netlib.org/lapack/.
- (15) https://boutproject.github.io/.
- (16) https://www.hdfgroup.org/solutions/hdf5/.
- (17) https://www.unidata.ucar.edu/software/netcdf/.
- (18) https://mdsplus.org/.
- (19) https://docs.conda.io/.
- (20) https://imas.iter.org.
- (21) https://w3.pppl.gov/ntcc/.
- (22) https://atom.scidac.io/.
- (23) https://www.plasmapv.org/.
- (24) https://vaml.org/.
- (25) https://github.com/openPMD.
- (26) Michael Metcalf, John Reid, and Malcolm Cohen. fortran 95/2003 explained. Oxford Univ. Press. 2004. 50
 - S.P. Smith PPPL Intro Course June 24, 2020

- (27) http://www.sscce.org.
- (28) https://en.wikipedia.org/wiki/Concurrent_Versions_System.
- (29) https://subversion.apache.org/.
- (30) https://git-scm.com/.
- (31) http://www.catb.org/~esr/writings/cathedral-bazaar/.

