Intro to Fusion Energy and Plasma Physics Course PPPL SULI, June 25, 2020

Complex (Dusty) Plasmas

Evdokiya (Eva) Kostadinova

Center for Astrophysics, Space Physics, and Engineering Research (CASPER) Baylor University, Waco, TX, USA

Outline

Part I: It's a dusty Universe

- Part II: Experiments and phenomena
- Part III: Dusty plasma theory

Part IV: Order and disorder

Evdokiya (Eva) Kostadinova

- Assistant Research Professor, Baylor
- PhD Physics, Baylor, Dec 2017
- □ Transport problems in disordered matter with nonlocal interactions → dusty plasma

Springer Theses Recognizing Outstanding Ph.D. Research

Evdokiya Georgieva Kostadinova

Female international student

- BS from Furman University (small, liberal arts school)
- Interdisciplinary research b/w math and physics

Part I: It's a dusty Universe

Outline

Part I: It's a dusty Universe

Part II: Experiments and phenomena

Part III: Dusty plasma theory

Part IV: Order and disorder

Scope of Dusty Plasma Research

- Dusty plasmas are four-component plasmas consisting of electrons, ions, neutrals and charged, solid or liquid particulates ("dust").
- Dust particles can appear in plasmas over vast scales – from laboratory to astrophysical systems.

Scope of Dusty Plasma Research

- Dusty plasmas are four-component plasmas consisting of electrons, ions, neutrals and charged, solid or liquid particulates ("dust").
- Dust particles can appear in plasmas
 over vast scales from laboratory to
 astrophysical systems.

Scope of Dusty Plasma Research

- Dusty plasmas are four-component plasmas consisting of electrons, ions, neutrals and charged, solid or liquid particulates ("dust").
- Dust particles can appear in plasmas
 over vast scales from laboratory to
 astrophysical systems.

Dusty Plasmas on the surface of the Moon

"...lunar dust, itself the Number 1 environmental problem on the Moon."

O'Brien, B. J., & Gaier, J. R. (2009, November). Indicative Basic Issues About Lunar Dust in the Lunar Environment. In *Annual Meeting of the Lunar Exploration Analysis Group* (Vol. 1515, p. 52).

Lunar tattoos (swirls)

Reiner-Gamma Formation

Credit: NASA, JPL, USGS

Airy Formation

Lunar tattoos (swirls)

Solar wind Magnetic field Lunar swirl region

Credit: NASA, JPL, USGS

Lunar tattoos (swirls)

Credit: NASA, JPL, USGS

Lunar swirl region

Scaling of Lunar Swirls

- Interaction b/w the solar wind and weak B-field in the lunar crust yields lunar dust transport and formation of lunar swirls $\sim 100 \ km$ in size.
- □ Similar processes seem to guide dust transport in laboratory plasmas and the formation of dusty plasma swirls $\sim 20 \ mm$ in size.

Dusty plasmas in industry

- □ Up to 50% of all semiconductor chips are contaminated during processing due to dust formation.
- "Killer Defects" are caused by dust larger than half the width of an etched feature on the wafer
- The U.S. semiconductor industry generated global sales of \$166 billion out of a \$335 billion total market in 2015

Dusty plasmas in industry

Nonthermal plasma synthesis of nanocrystals

- ❑ Nanoparticles are intensely heated by surface reactions → high melting point materials can be synthesized
- □ Charging of nanoparticles reduces agglomeration → synthesis of very small nanocrystals with diameters 2 - 10 nm
- In 2017, US nanotechnology industry had market value of ≈\$49 billion and is projected to have \$76 billion by 2020

Particulates in Edge Plasma \rightarrow Interfacial Plasma Physics

Topics in interfacial plasmas

- Charge & dynamics: strong B-field, thermionic emission, fast flows of ions
- Cooling mechanisms: radiation vs. ablation at the plasma-dust interface
- Diagnostics: real-time detection and measurement of dust dynamics and properties

Plasma Parameters $n = 10^{17} - 10^{20}m^{-3}$ $T_e = 1 - 100eV$ B = 1 - 10 T

Grain Parameters $r_d = nm - cm$ Material: Be, C, W $v_d = 10 - 60 m/s$

Sharpe, J. P., Petti, D. A., & Bartels, H. W. (2002). Fusion Eng & Design, 63, 153-163.

Particulates in Edge Plasma \rightarrow Interfacial Plasma Physics

Frontier Science in Tokamaks

- Expose material samples to edge or scrape-off layer regions, where high plasma velocities result in high heat fluxes
- Simulate hypervelocity entry of solid projectiles, meteorites and probes, into high density atmosphere
- Study materials for thermal shields

Plasma Parameters $n = 10^{17} - 10^{20}m^{-3}$ $T_e = 1 - 100eV$ B = 1 - 10 T

Grain Parameters $r_d = nm - cm$ Material: Be, C, W $v_d = 10 - 60 m/s$

Why Dusty Plasma Physics is a separate field?

Why Dusty Plasma Physics is a separate field?

Has been around longer than you think

Early temperature measurement in a dusty plasma

R. Marlino, 2007 Summer College on Plasma Physics, Abdus Salam International Center for Theoretical Physics

Why Dusty Plasma Physics is a separate field?

Has been around longer than you think

Early temperature measurement in a dusty plasma

R. Marlino, 2007 Summer College on Plasma Physics, Abdus Salam International Center for Theoretical Physics

More fundamental than you think

The discovery of the world's first 2D dusty plasma crystal

Morfill, G. E., and H. Thomas. "Plasma crystal." Journal of Vacuum Science & Technology A, 14.2 (1996): 490-495. 21

Part II: Experiments and phenomena

Outline

Part I: It's a dusty Universe

Part II: Experiments and phenomena

Part III: Dusty plasma theory

Part IV: Order and disorder

International Collaborations in Dusty Plasmas

Expand and explore large parameter space
 Evaluate techniques in various conditions
 Develop advanced numerical simulations

ঠ্ন

Reactive Plasma

PK-4 (DC, microgravity)

Dodecahedron

(tailored electric fields)

Zy-flex

RF (electrostatic)

MDPX (magnetized)

24

Dusty plasma experiments on the ISS

Images credit: German Aerospace Center (DLR)

Columbus Module

ISS

Laboratory cabinet with drawers for the instruments of the experiment

Plasma Kristall 4 Lab

Plasma Kristall – 4 (PK-4) Experiment on the ISS

Fink, Martin A., Markus H. Thoma, and Gregor E. Morfill., Microgravity Science and Technology 23.2 (2011): 169-171.

PK-4 ISS Observed Phenomena

Microgravity dusty plasmas are ideal for studying fundamental processes in fluid dynamics at the individual particle level.

Usachev, A., et al. Czechoslovak Journal of Physics 54.3 (2004): C639.

PK-4 ISS Observed Phenomena

Microgravity dusty plasmas are ideal for studying fundamental processes in fluid dynamics at the individual particle level.

Dust lane formation

Part III: Dusty plasma theory

Outline

Part I: It's a dusty Universe

Part II: Experiments and phenomena

Part III: Dusty plasma theory

Part IV: Order and disorder

Fundamental parameters

 $\alpha = \text{electrons}$ (e), ions (i), dust (d), neutrals (n) n_{α} – Plasma density of species α T_{α} – Temperature (often assumed room temp. for neutrals/ions/dust) $v_{th,\alpha}$ – Thermal velocity $\lambda_{D,\alpha}$ - Debye length $\omega_{p,\alpha}$ - Plasma frequency η_{ii} - Collision frequency b/w species All these are needed to calculate the dynamics of each species α .

Fundamental parameters

 α = electrons (e), ions (i), dust (d), neutrals (n) n_{α} – Plasma density of species α T_{α} – Temperature (often assumed room temp. for neutrals/ions/dust) $v_{th,\alpha}$ – Thermal velocity $\lambda_{D,\alpha}$ - Debye length $\omega_{p,\alpha}$ - Plasma frequency η_{ii} - Collision frequency b/w species All these are needed to calculate the dynamics of each species α .

Expressions

 $\eta_d = -$

	$4\pi n_{\alpha} Z_{\alpha}^2 e^2$
-	m_{α}

 $\eta_{e,i} \sim \sigma_{e,i} n_n v_{n,th}$

 $\frac{8\sqrt{2\pi}r_d^2n_n\boldsymbol{v_{n,th}}m_n}{3m_d}$

Number density $n_{\alpha} = \int_{-\infty}^{\infty} f_{\alpha}(\bar{v}) d^{3}\bar{v}$ $d^{3}\bar{v} = v^{2} \sin\theta \, dv d\theta d\phi$

α = electron or ion

Number density $n_{\alpha} = \int_{-\infty}^{\infty} f_{\alpha}(\bar{v}) d^{3}\bar{v}$ $d^{3}\bar{v} = v^{2} \sin\theta \, dv d\theta d\phi$

Thermalized plasma → Maxwellian velocity distributions

 $f_{\alpha}(\bar{v}) = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi kT_{\alpha}}\right)^{3/2} e^{-\frac{m_{\alpha}v^2}{2kT_{\alpha}}}$

$\alpha =$ electron or ion

Number density $n_{\alpha} = \int_{-\infty}^{\infty} f_{\alpha}(\bar{v}) d^{3}\bar{v}$ $d^{3}\bar{v} = v^{2} \sin\theta \, dv d\theta d\phi$

Thermalized plasma → Maxwellian velocity distributions

 $f_{\alpha}(\bar{\nu}) = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi kT_{\alpha}}\right)^{3/2} e^{-\frac{m_{\alpha}\nu^2}{2kT_{\alpha}}}$

$\frac{1}{2}m_{\alpha}v^{2} = \frac{3}{2}kT_{\alpha}; \quad \langle v^{2} \rangle = \frac{\int_{-\infty}^{\infty} v^{2}f_{\alpha}(\bar{v})d^{3}\bar{v}}{\int_{-\infty}^{\infty} f_{\alpha}(\bar{v})d^{3}\bar{v}}$ $v_{rms} = \sqrt{\frac{3kT_{\alpha}}{m_{\alpha}}}$

$\alpha =$ electron or ion

Number density $n_{\alpha} = \int_{-\infty}^{\infty} f_{\alpha}(\bar{v}) d^{3}\bar{v}$ $d^{3}\bar{v} = v^{2} \sin\theta \, dv d\theta d\phi$

Temperature

$$\left\langle \frac{1}{2} m_{\alpha} v^{2} \right\rangle = \frac{3}{2} k T_{\alpha}; \quad \langle v^{2} \rangle = \frac{\int_{-\infty}^{\infty} v^{2} f_{\alpha}(\bar{v}) d^{3} \bar{v}}{\int_{-\infty}^{\infty} f_{\alpha}(\bar{v}) d^{3} \bar{v}}$$

$$v_{rms} = \sqrt{\frac{3k T_{\alpha}}{m_{\alpha}}}$$

Thermalized plasma → Maxwellian velocity distributions

$$f_{\alpha}(\bar{\nu}) = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi kT_{\alpha}}\right)^{3/2} e^{-\frac{m_{\alpha}\nu^2}{2kT_{\alpha}}}$$

Yukawa Shielding potential

arge directly $\frac{(Ze)}{4\pi\epsilon_0 r} e^{\frac{-r}{\lambda_D}}$

Finding dust charge: Equilibrium condition

□ Assume dust particles float to a potential at which total current to its surface is zero $\frac{dQ}{dt} = \sum_{i} J_i(\phi_s) = 0$ □ Charge related to surface potential $Q = C\phi_s$

Capacitance *C* depends on dust properties (material, size, shape)

Kortshagen, Uwe R., et al. Chemical reviews 116.18 (2016).

41

Finding dust charge: Equilibrium condition

□ Assume dust particles float to a potential at which total current to its surface is zero $\frac{dQ}{dt} = \sum_{i} J_i(\phi_s) = 0$ □ Charge related to surface potential $Q = C \phi_s$

Capacitance C depends on dust properties (material, size, shape)

Kortshagen, Uwe R., et al. Chemical reviews 116.18 (2016).

- The particle gains energy from capturing electrons and ions and from their recombination at the particle surface.
- It loses energy from impacts with energetic particles (secondary electron emission) and thermionic emission or photoemission of electrons.

Finding dust charge: OML theory of charging

- For lab studies, ions and electrons are the dominant charging mechanisms.
- Estimate the flux to the grain surface using orbit motion limited (OML) theory.

$$I_e = -4\pi r_d^2 e n_e \left(\frac{8kT_e}{\pi m_e}\right)^{\frac{1}{2}} \exp\left(\frac{e\phi_s}{kT_e}\right)$$
$$I_i = 4\pi r_d^2 e n_i \left(\frac{8kT_i}{\pi m_i}\right)^{\frac{1}{2}} \left(1 - \frac{e\phi_s}{kT_i}\right)$$

□ Steady state: $I_e + I_i = 0$

Allen, Physica Scripta, 45(5) p. 496, 1992 V. E. Fortov, et al., Rev. of Topical Problems: Dusty plasmas. Phys. Usp., 47:447–492, 2004.

Finding dust charge: OML theory of charging

- For lab studies, ions and electrons are the dominant charging mechanisms.
- Estimate the flux to the grain surface using orbit motion limited (OML) theory.

$$I_e = -4\pi r_d^2 e n_e \left(\frac{8kT_e}{\pi m_e}\right)^{\frac{1}{2}} \exp\left(\frac{e\phi_s}{kT_e}\right)$$
$$I_i = 4\pi r_d^2 e n_i \left(\frac{8kT_i}{\pi m_i}\right)^{\frac{1}{2}} \left(1 - \frac{e\phi_s}{kT_i}\right)$$

□ Steady state: $I_e + I_i = 0$

OML Theory assumes

- Homogeneous, isotropic plasma
- Conservation of energy and angular momentum
- Plasma particles which 'orbit' the charged grain are assumed to be collected.

Allen, Physica Scripta, 45(5) p. 496, 1992 V. E. Fortov, et al., Rev. of Topical Problems: Dusty plasmas. Phys. Usp., 47:447–492, 2004.

Finding dust charge: OML theory of charging

- For lab studies, ions and electrons are the dominant charging mechanisms.
- Estimate the flux to the grain surface using orbit motion limited (OML) theory.

$$I_e = -4\pi r_d^2 e n_e \left(\frac{8kT_e}{\pi m_e}\right)^{\frac{1}{2}} \exp\left(\frac{e\phi_s}{kT_e}\right)$$
$$I_i = 4\pi r_d^2 e n_i \left(\frac{8kT_i}{\pi m_i}\right)^{\frac{1}{2}} \left(1 - \frac{e\phi_s}{kT_i}\right)$$

Solve numerically to for ϕ_s to get the charge $Q = C \phi_s$

Allen, Physica Scripta, 45(5) p. 496, 1992

V. E. Fortov, et al., Rev. of Topical Problems: Dusty plasmas. Phys. Usp., 47:447–492, 2004.

R. Marlino, 2007 Summer College on Plasma Physics, Abdus Salam International Center for Theoretical Physics

Finding dust charge: Numerical solution

Example conditions: □ Spherical grains 1µm radius Hydrogen plasma $T_e = T_i \approx 1 eV$ $\phi_{s} = -2.5 \ kT/e$ $Q_d = C\phi_s = -2000e$

R. Marlino, 2007 Summer College on Plasma Physics, Abdus Salam International Center for Theoretical Physics

Part IV: Order and Disorder

Outline

- Part I: It's a dusty Universe
- Part II: Experiments and phenomena
- Part III: Dusty plasma theory
- Part IV: Order and disorder

Electrorheology

Turbulence

Forces acting on the dust particles

$$m_d \frac{dv}{dt} = F_L + F_G + F_D + F_T + F_P$$

- $\Box \ F_L \text{Lorentz force} = F_E + F_M$ $(F_E \gg F_M)$
- \Box F_G Gravitational force
- $\Box F_D$ Drag Forces
 - Ion Drag Force
 - Neutral Drag Force
- \Box F_T Thermophoretic Force
- \Box F_P Radiation Pressure

In addition, the dusty plasma dynamics is affected by **dust-dust** and **dust-plasma** interactions.

Self-organization in dusty plasma

The coupling parameter Γ is a measure for self-organization (ordering)

electrostatic potential

thermal energy

 Q_d^2 $4\pi\varepsilon_0 kT_d \Delta$ Wigner-Seitz radius

 Dusty plasmas exhibit states of matter and structural transitions like materials in condensed and soft-matter physics
 Plasma-shielded dust particles behave as "proxy atoms"

Image source: Introduction to the physics of complex/dusty plasmas, E. Thomas, Auburn University

Part IV: Order and Disorder

Electrorheological (ER) Dusty Plasma

Kwon, S.,, et al. 2015. Nanomaterials, 5(4), p.2249.

Electrorheological (ER) Dusty Plasma

Kwon, S.,, et al. 2015. Nanomaterials, 5(4), p.2249.

<u>PK-3</u>: first observation of ER dusty plasma, RF argon discharge

Ivlev, et al., 2010. IEEE T PLASMA SCI, 38(4), p.733

Electrorheological (ER) Dusty Plasma

Credit: PK-4 lab, Video VM2-AVI-151028-134729 55

Connecting experiment and theory

www.baylor.edu/CASPER

Experimental dispersion relation

PK-4 EXPERIMENT:

DC Ne, 16 Pa, 0.5 mA, 50% Duty Cycle, 500 Hz switching

Particle tracking of grains

Connecting experiment and theory

www.baylor.edu/CASPER

Experimental dispersion relation

EXPERIMENT:

DC Ne, 16 Pa, 0.5 mA, 50% Duty Cycle, 500 Hz switching

Particle tracking of grains

THEORY: For given potential ϕ , the dispersion relation can be derived:

$$\omega = 2\left(\frac{1}{m_d}\frac{d^2\phi_{total}(a)}{dx^2}\right)^{1/2} \left|\sin\frac{ka}{2}\right|$$

Rosenberg, M., 2015. J Plasma Phys, 81(4).

Assume Dust-Ion Dipole

How to verify the assumed mechanism?

Stable chains form at higher $M_T \rightarrow higher$ ion speed $\rightarrow Large E$ -field needed to accelerate ions and induce the ER transition in DC.

Matthews, Lorin, et al. "Dust chains in the strongly coupled liquid regime." *Bulletin of the American Physical Society*(2018).

What can cause Dust-Ion Dipoles in DC?

Hartmann, P., Rosenberg, M., Matthews, L., Sanford, D., Reyes, J., & Hyde, T. (2018). Ionization waves in the PK-4 direct current neon discharge. *Bulletin of the American Physical Society*.

r [mm]

Part IV: Order and Disorder

Definition of Turbulence

Classical Turbulence

Navier Stokes Equation for the velocity vector: $u_t + (u \cdot \nabla u) = \Delta u - \nabla p$ Describes the flow of an incompressible viscous fluid.

Definition of Turbulence

CASPER www.baylor.edu/CASPER

Classical Turbulence

Navier Stokes Equation for the velocity vector: $u_t + (u \cdot \nabla u) = \Delta u - \nabla p$ Describes the flow of an incompressible viscous fluid.

(Royal Collection Trust/© Her Majesty Queen Elizabeth II 2019)

Quantum Turbulence

- Differs from classical turbulence in three ways:
- i. Two-fluid behavior
- ii. Fluids can be inviscid
- iii. Discrete vortices .

Definition of Turbulence

Classical Turbulence

Navier Stokes Equation for the velocity vector: $u_t + (u \cdot \nabla u) = \Delta u - \nabla p$ Describes the flow of an incompressible viscous fluid.

(Royal Collection Trust/© Her Majesty Queen Elizabeth II 2019)

Quantum Turbulence

- Differs from classical turbulence in three ways:
- i. Two-fluid behavior
- ii. Fluids can be inviscid
- iii. Discrete vortices .

Tsepelin, Viktor, et al., Phys Rev B 96.5 (2017)

Semi-Classical Turbulence

Dissipationless transfer of energy from large to small scales. Kolmogorov energy spectrum: $E(k) \sim k^{-5/3}$

Can be associated with the presence of metastable bundles of polarized <u>quantized vortices</u>.

(dartmouth.edu/~cushman/courses/engs250/Kolmogorov.pdf)

Turbulence in Dusty Plasma

- 1. Consider **2D dust fluid** close to crystallization.
- 2. At t = 0 import energy E at the largest scale.
- Resulting vortex scales are discretized by the # of participating dust particles.
- *d_{max}* ~ spatial size of crystal
- *d_{min}* ~ dust particle diameter

Turbulence in Dusty Plasma

- 1. Consider **2D dust fluid** close to crystallization.
- 2. At t = 0 import energy E at the largest scale.
- Resulting vortex scales are discretized by the # of participating dust particles.
- *d_{max}* ~ spatial size of crystal
- *d_{min}* ~ dust particle diameter

- 1. Consider **discrete k-space** of simple wave modes
- 2. At t = 0 import energy E at the largest scale.
- Vortex scales are combinations of wave modes in k-space with:
 - $k_{min} \equiv \delta_0$ (single delta function)
 - $k_{max} \equiv \text{simulation size}$

The largest k corresponds to the dissipation space scale.

Ratynskaia, et al., 2006. " Phys Rev Let, 96(10), p.105010

Summary

- Dusty plasma physics spans topics across astrophysics, fusion, materials research, space exploration, mathematics, etc.
- Plasma dust interactions are key to laboratory plasma physics → crucial for fusion
- Dusty plasmas exhibit states of matter and structural transitions like materials in condensed and soft-matter physics
- Dusty plasma physics has applications to multi-billion industries, including semiconductors and nanotechnology.

