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• Motion of single particles important to understand behavior of plasmas 
• How magnetic fields modify single particle motion 

• Gyromotion about a guiding center 
• Forces can cause guiding center drift 

• Some real life consequences:  
– Why do tokamaks have helical B fields? 
–  Why do astrophysical shocks need a magnetic field?

Key Points to Take Away

• NRL Plasma Formulary 
www.nrl.navy.mil/ppd/content/nrl-plasma-formulary

• Introduction to Plasma Physics and Controlled Fusion by F. F. Chen

References

http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary
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Single-particle motion is key intuition to understand many 
problems in plasma physics

Structure of solar plasmas

Role of magnetic fields in 
collisionless shocks

Magnetically-driven Inertial-confinement 
fusion in Z-pinches

Plasma confinement for Magnetic Fusion 
Energy in stellarators and tokamaks
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Ideas behind single-particle physics threads all the way through to 
the most modern simulation techniques 

• The Particle-in-Cell simulation 
technique 

Calculate particle
motion in E and B fields
[F = ma]

Sum over particles to calculate
current J and charge density ρ

Update E and B
fields on mesh
[Maxwell’s Equations]

• Idea allows plasma simulations that run on the world’s fastest supercomputers
• Some of you may use “gyrokinetic” simulations during your internship, which take 

advantage of single-particle results here to speed up calculations
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The trick: use magnetic fields

Recall a burning plasma will require a temperature  
T ~ 5-10 keV = 50-100 M Kelvin

Even with ~1020 ions/m3 , the ion would travel ~10 km 
before colliding with another  

Therefore these plasmas are effectively  
collisionless (a common theme) 

The ITER tokamak has minor radius 2 m 
How to confine particles?

We can understand a lot about how fusion devices 
confine plasma by studying single particle motion.
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• A particle with charge (q) moving with velocity (v) in the presence 
of electric and magnetic fields will experience a force:

Charged Particles Feel The (Lorentz) Force

We know from Newton’s 
second law of motion that 
force causes acceleration:

A charged particle 
moving perpendicular to  
the magnetic field feels a force
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• Consider the motion of a particle in a constant, uniform B field

How Does a Charged Particle Move in a Magnetic Field?

y

x

+

Then

So we can writev

F
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• Consider the motion of a particle in a constant, uniform B field

How Does a Charged Particle Move in a Magnetic Field?

y

x

+

Then

So we can write

Now let’s do the algebra
one “gyration” or “gyro-orbit” completed
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y

x

+

Let’s break this into components:

Goal: Solve the Equations of Motion for a Charged 
Particle In A Magnetic Field

The ‘dot’ notation represents  

Particles move freely 
along the field line
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Take Another Time Derivative & Substitute to Obtain 
Differential Equations For Each Spatial Coordinate

Rewriting, we get

These may remind you of the equations for a simple harmonic oscillator

Homework: go through the details on your own
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Solve the Differential Equations 

These differential equations can be solved using sines and cosines:

the magnitude of the initial 
velocity perpendicular to B

an arbitrary phase 
to match the initial 
velocity conditions  

account for positive or 
negative q 

Homework: go through the details on your own
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Integrating, we obtain

“Larmor” radius or “gyro-radius”

Cyclotron or gyro-frequency

• Charged particles undergo circular orbits about a guiding center  

The Result: Circular Motion About A Guiding Center 
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Let’s take                   and 

Gyromotion of a Charged Particle In A Magnetic Field

y

x

+

For a positively charged particle:

1. At             , 
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y

x

Gyromotion of Ions vs. Electrons

+

• Ions generally have a much larger Larmor radius than electrons

• The direction of gyromotion depends on the sign of the charge

-

In ITER, for a typical deuterium ion  
with Ti=10 keV and B=5 Tesla would have 

An electron with Te=10 keV and B=5 Tesla has 

 (60 times smaller)
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Particle motion and the “guiding center”

http://iter.rma.ac.be/en/img/MagneticConfinement.jpg

The gyration strongly constrains the motion 
of the particle perpendicular to the B field.

So the particle motion is intuitively 
decomposed to a sum of (1) gyration plus 
(2) “drift” of a "guiding center”

The guiding center is what is left when you 
average over the gyration

The guiding center can have: 
(1)fairly unconstrained parallel motion
(2)slower “drifts” in the perpendicular 

direction

Fusion devices should be much larger than the gyro-radii.  
Homework: Is it true for ITER?
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Magnetic structure of the solar corona

Solar coronal plasma 
Te = 10 MK  (100 eV) 
B = 100 G

Which way is the magnetic field running? 
Is the gradient stronger along or across the field?
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Some guiding center dynamics: Magnetic Mirrors

Result:  
gyromotion + mirror force in the         direction

The Br ends up causing additional 
acceleration in the z direction: 

The magnetic moment is

mirror force 

μ is an “adiabatic invariant” - a deeply important concept for magnetized plasmas
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y

x

+

Next Simplest Case to Analyze: Drift under Constant, 
Uniform Electric Field Perpendicular to Magnetic Field
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y

x

+

Accelerates due to E 

Faster velocity increases vxB 

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field
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y

x

+
Faster velocity increases vxB 

Decelerates 

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Accelerates due to E 
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Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

y

x

+

Ion guiding center drifts in the direction 
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Guiding Center Drift Due to E x B

y

x
-

The ExB drift can be written more generally as

• ExB drift is independent of charge and mass 
   
• Both electrons and ions move together 

Electron guiding center also drifts in the direction 

Preview for MHD lecture: Magnetic field also moves with plasma, via 
Faraday’s law.  Plasma and field can be thought of being “frozen together”
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Digression: How magnetic fields mediate collisionless shocks in astrophysical plasmas

Collisionless SNR shocks shown to 
be the sites of cosmic ray 
acceleration. [Ackerman Science 
2013]

Shocks occur where supersonic flows interact.   
Shocks convert kinetic energy to heat 

In gas, inter-particle collisions mediate the shock 

In plasma, collisionless shocks have shock width << mean-free-
path. 

SNR1006

gas

plasma



34

Magnetic fields mediate collisionless shocks in astrophysical plasmas

Shocks occur where supersonic flows interact.   
Shocks convert of kinetic energy to heat 

In gas, inter-particle collisions mediate the shock 

In plasma, collisionless shocks have shock width << mean-free-path. 

Collective electromagnetic fields mediate shock in collisionless 
plasmas 

Possible mechanisms: 
• Pile-up of pre-existing field (“magnetized shocks”) 
• Self-generation of a turbulent magnetic field near shock by 

Weibel instability * 

SNR1006 density
propagating shock front heated, shocked 

plasma

vExB

E
B B B

gas

plasma

See recent experiments: 
WF, G.Fiksel et al Phys. Rev. Lett (2013)
D. Schaeffer, WF, et al PRL (2017)
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Other Forces Can Also Cause Guiding Center Drift

• Any force perpendicular to B can cause particles to drift

Drift due to force:

Examples of forces: gravity

centrifugal

Rc
• Bend the magnetic field into a donut shape  
• No end losses because the field lines go 

around and close on themselves  
• BUT a particle following a toroidal magnetic 

field would experience Fcf 
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A particle moving along a curved field 
line will drift up or down, depending on 
the sign of the charge

The outward centrifugal force causes curvature drift

z

Btoroidal

Rc

Curvature Drift Due to Bending Field Lines
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Spatially Varying Magnetic Field Strength 
Also Causes Drift
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+

• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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-
+

• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger 

• The resulting drift velocity is described by:

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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Application: What Happens To Charged 
Particles In A Purely Toroidal Magnetic Field?

Ion  
drift

+
++

+

Electron 
drift-

-
-

-

Btoroidal

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift: these effects add   

z

ɸ
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Charged Particles Will Drift Outward 

Ion  
drift

Electron 
drift

E

+
++

-
-

-

+

-

Btoroidal

• This means that no matter what, particles in a torus with a purely 
toroidal field will drift radially out and hit the walls.  

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift   

z

ɸ
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Solutions: Add twist to the field with poloidal fields

Toroidal: long way around 
Poloidal: short way around

Iplasma

Bpoloidal

Btoroidal
ɸ

1. Use external coils to apply a toroidal 
magnetic field 

2. Drive current in the plasma to generate 
    poloidal magnetic field

Twist is applied by 3-D shaping fields.

Tokamak: Stellarator:

Will be returned to in lectures by D. Battaglia, F. Laggner, and A. Bader!
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z
ɸ

R

There Are Two Main Classes of Particle Orbits In Tokamaks

Passing

Bp

Bt

Particles with sufficient v||will follow the 
helical magnetic field around the torus

z

ɸ

R

Trapped

Bp

Bt

Particles with lower v|| are reflected 
as they encounter stronger B and 
therefore execute “banana” orbits 
as they precess around the torus B
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Conclusions - single particle and gyro motion in plasmas

• Work hard and soak it in.  Have a good summer! 

• Magnetic fields mediate collective 
behavior of plasmas, via drifts

• Cross-field confinement 
structures space, solar, and 
astrophysical plasmas, too 

• Magnetic fields needed to confine hot 
collisionless fusion plasmas.   

• Guiding center undergoes ExB, gradB 
and curvature drifts


