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How did plasma physics find me? 
• Originally from northern Wisconsin
• Like to build things -> engineering school

• University of Wisconsin 
• Nuclear Engineering/Engineering Physics 

(BS 2006, MS 2008, PhD 2010)
• Undergrad RA in Prof. Hershkowitz’s lab
• Caught the plasma bug, never looked back

• Postdoctoral training
• University of New Hampshire (2010-2012)
• Los Alamos National Laboratory (2012-2013)

• University of Iowa Physics and Astronomy
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Why plasma physics and engineering? 

1. The thrill of “finding things out”

2. Can be both fundamental and practical 
• Fundamental questions: matter in extreme conditions, nonlinear 

dynamics, complexity, self-organization, etc., etc.
• Translational: Fundamental discovery often leads to new devices on a 

short timescale 
• Contributes to solving pressing problems of society
• This is especially true in Low Temperature Plasmas
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Outline of this talk
• What is a low temperature plasma?
• What are they used for?
• Historical context
• Basic properties
• Plasma potential 
• Sheaths
• Plasma chemistry
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What is a low temperature 
plasma? 
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Low temperature?
I thought plasmas were hot 

• Low temperature plasmas (LTP) are roughly defined by:
• Ion temperature: !"~0.03eV (near room temp)
• Electron temperature: !'~1 − 100eV (few-to-several eV)

• Highly non-equilibrium
• “Temperature” refers to a mean kinetic energy, rather than a 

thermodynamic temperature
• Plasma density can vary widely: *~10+ − 10,+cm-3

• Ionization fraction is usually low: -.-/ < 1%
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How can electron and ion “temperatures” 
be so different? 



Ions are much more massive than electrons
• Electron mass: !" = 9.1×10)*+kg
• Proton mass: !, = 1.7×10)./kg
• Ratio: 01

02
≈ 1836

About the same as:
• Ping pong ball:!77 = 2.7 g
• Bowling ball: !99= 5 kg
• Ratio: 0;;

0<<
≈ 1850
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Electrons move much faster than ions
• Thermal speed: !"# = %&'"(

)(

• Ratio: *+,*+-
= )-",

),"-
≈ 250 (uses 23 = 1eV)

About the same as
• A person walking: 3 miles/hr
• The speed of sound: 760 miles/hr
• Ratio: *5*6 ≈

789
: ≈ 250
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Equilibration rate depends on the mass ratio
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• Reference collision rate (electron-electron)
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Electrons escape the plasma before they 
come into equilibrium with ions

• Example: !" = 1%&, !( = 0.03%&,
n = 1×10./012, 3 ≈ 1 m, protons
• Mean free paths:

• Ions equilibrate with the neutrals
• Similar to ion-ion mean free path
• Details depend on pressure
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PLASMA

5"( ≫ 3

5""~3
5((~5(8 ≪ 3

3

5:"" ≈ 1m
5:"( ≈2000 m
5:(( ≈ 0.001m

Marginal e-e equilibration
No e-i equilibration

Excellent i-i equilibration



LTPs are (relatively) easy to make
• Power source couples energy to electrons

• Many ways to do this (a few examples to come)
• Energetic electrons partially ionize gas

• Ionization energies ~10s eV
• A simple example is an incandescent light bulb

• Electrons emitted from a hot filament 
• Unlike fusion plasmas, LTPs are typically not 

“confined” by a magnetic field 
• Electrons and ions are lost to boundaries
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Image from:
https://www.1000bulbs.com



dc filament-driven discharges
• Heat material that emits

electrons when hot
• Thermionic emission
• Filament 

• dc bias the filament with 
respect to the plasma
• Electrons gain energy from the 

electric field between the 
filament and plasma

• Energetic electrons ionize gas
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Images from Dr. Ryan Hood, U Iowa



dc electric field-driven discharges
• Electric field accelerates

electrons to high energy
• Electrons ionize neutrals

• Examples
• Arcs and sparks
• Glow discharges
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Image from: 
https://commons.wikimedia.org/wiki/File:Glow_discharge_regions.jpg

Image from: 
https://upload.wikimedia.org/wikipedia/commons/e/eb/Staccoto_Lightning.jpg
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ac capacitively coupled discharges
• Electrodes biased with ac voltage
• MHz frequency electrostatically couples power to electrons
• Advantageous because electric fields are confined to edges (sheaths)
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Figure from: Pattyn, Kovacevic, Strunskus, Lecas and Bernt, Scientific Reports 6, 10886 (2019).



ac inductively coupled discharges
• Antenna biased with ac voltage 
• 10s of MHz to couple with electrons

• Energy coupled by electromagnetic
induction
• ac current in the coils induces an ac 

magnetic field inside the tube
• produces an electromotive force 

(electric field) inside the plasma
• Energetic electrons ionize neutrals

15

Image from: https://www.trumpf.com

RF

Plus, many more ways to make LTPs



Low temperature plasmas are 
tremendously useful 
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Utilize directed energy of charged 
particles
• Electric fields accelerate ions 

(or electrons) in a preferred 
direction 
• Directed kinetic energy is used

to do useful things
• Etching semiconductors 

• >$1 T industry!
• Surface modification of materials
• Plasma-based propulsion 
• Ion and electron sources
• Sources of fusion neutrons

• neutron imaging
• producing medical isotopes
• (not for net energy production)
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www.sentech.com

Hall thruster: PPPL!



Non-equilibrium (high temperature 
electrons) enables unique chemistry 
• “Normal” chemistry only 

accesses reactions near room 
temperature 
• New reactions at eV e- energy
• Plasma catalysis 

• Many applications
• Materials processing
• Climate
• Chemical production 
• Medicine
• Energy
• Agriculture 
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Figure from: Zhang et al, “Plasma activation of methane for hydrogen 
production in a N2 rotating gliding arc warm plasma: A chemical kinetics 
study,” Chemical Engineering Journal 345, 67 (2018).
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https://mipse.umich.edu/nsfworkshop/docs/NSF_LTP_Workshop_Report_2017_04_01_2side_print.pdf



Historical context
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• Cavendish Professor of Physics, 
Cambridge

• Discovered 
– electrons, isotopes, Thomson scattering, 

plum pudding model, mass spectrometer, 
waveguides

• Renowned educator
– Advised 6 physics Nobel laureates and 2 

chemistry Nobel laureates
– Ex: Rutherford, Bohr, Born, Oppenheimer, 

Bragg
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Joseph J. Thomson (1856-1940)

(1906) for work on the 
conduction of electricity in 
gasses



• Needed high vacuum 
– otherwise a plasma would form!

• Cathode rays were influenced by 
electric and magnetic fields
– Measured charge-to-mass ratio

• Understanding collisions was 
essential
– Showed size is 1000x smaller than the 

atom (first subatomic particle)
• Plum pudding model of the atom
– corpuscles emanating in a sea of positive 

charge
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Thomson discovered the electron

From: wikipedia.org

Crooks tube with high vacuum 



• Industrial physicist at General 
Electric 

• Founded
– Plasma physics
– Surface chemistry
– Atmospheric control (cloud seeding) 

• Invented gas-filled incandescent 
lamp, Langmuir probe diagnostic, 
Langmuir (plasma) wave, hydrogen 
welding
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Irving Langmuir (1881-1957)

1932: For his 
discoveries and 
inventions in surface 
chemistry  
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Langmuir named “plasma” and “sheath”

Hull and Langmuir, Proc. Nat. Acad. 
Sci. 51, 218 (1929)
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Langmuir named “plasma” and “sheath”



Basic Properties 
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Plasmas are surrounded by sheaths
• Sheath: A narrow region of strong 

electric field that acts to balance electron 
and ion currents lost from a plasma
• Recall: electrons move faster than ions

• Electrons quickly charge the boundary 
surface

• Sheaths are an electrostatic barrier that 
forms naturally as ions are attracted to 
the electron surface charge
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PLASMA

sheath

!"#
!"$

= &$'#
&#'$

≈ 250 (uses ,- = 1eV)



Sheaths are thin (almost like a skin)
• Polarization shields electric fields in plasmas

• Debye length: !"# =
%&'(
#)

= 740 '((#.)
)(0123)

cm

• For our example: 4# = 167, n = 1×10;<=>?@: 
!"# ≈ 7×10?Bm  (tiny!)

• More complete analysis of sheath thickness (Child-Langmuir):
CD
!"

=
2
3

26∆H
4#

@/J

• Plasma potential: ∆H
• Determined by balancing electron and ion currents to boundary
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• Leading theoretical physicist of the 
20th century 
– Hidden variables theory of quantum 

mechanics, Aharonov-Bohm effect, 
neuropsychology, philosophy

– In plasma: Bohm diffusion, Bohm criterion, 
plasmon, random-phase approximation

• His war work was in plasma
– Refused security clearance 
– Thomson -> Oppenhiemer -> Bohm
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David Bohm (1917-1992)

figure

S.D. Baalrud

February 4, 2012

Fellow of the Royal Society
Expert in theoretical physics, phi-
losophy and neuropsychology

(photo credit: www.wikipedia.org)
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• Ions must flow into the sheath 
supersonically
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Bohm criterion and the presheath
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Discharges in Magnetic Fields, 1949



Plasma potential is determined by 
balancing electron and ion currents
• Ions are lost at the Bohm flux:

Γ" ≈ 0.6'( )*
+"

• The 0.6 is from the presheath density drop
• Electrons are lost a thermal flux, reduced by the sheath:

Γ* ≈ '( )*
2-+*

'.∆0/23

• Setting these equal gives the plasma potential:
∆4 = 23

* 6(
789
:83

≈ 3V
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• 2 length scales
– Sheath
– Presheath

• Child-Langmuir law

• Bohm criterion 

– Presheath potential drop

Summary of sheath properties
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Plasma interaction with electric fields, such as 
sheaths, are the basis for many technologies

• Manufacturing microelectronics 
• Directed ion energy enables etching 

of large aspect ratio trenches
• Enabled Moore’s law

• Chemistry at the surface is also 
important
• Reactive ion etching
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Figure from: Samukawa, et al “2012 Plasma Roadmap,” J. Phys. D 45, 
253001 (2012).

Figure from: http://www.appliedmaterials.com/



Sheaths also influence the chemistry 
• Transfer of plasma-generated reactive 

species to materials
• Happens through a sheath

• The sheath influences the electron 
energy distribution function (EEDF) 
in the plasma 
• The EEDF controls the rate of chemical 

reactions
• Modeling the EEDF is a complex

plasma-boundary interaction problem, 
mediated by the sheath
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Figure from: Samukawa, et al “2012 Plasma Roadmap,” J. Phys. D 45, 
253001 (2012).



Plasmas enable more of our modern way 
of life than you might realize
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Figure from “Plasma 2010” NAS decadal report



Low Temperature Plasma is an exciting 
area of science and engineering  
• Fast-paced
• Short timeframe from fundamental research to engineering 

implementation 
• Interdisciplinary
• Source design must be coupled with desired outcome 

• Important 
• Enables many modern technologies 
• And you may not have even realized it! 
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Suggested References 
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