
Fast ion orbit modeling using a 
Chebyshev representation for the 
magnetic potential.

1

Maxwell Rosen, Leonid Zakharov

SULI Summer 2020

This work was made possible by funding from the Department of Energy for the 
Summer Undergraduate Laboratory Internship (SULI) program. This work is 
supported by the US DOE Contract No. DE-AC02-09CH11466



Outline 2

• Information about the Lithium Tokamak Experiment.

• Chebyshev polynomials.

• The Chebyshev approximation in 1D and 2D.

• Computational methods.

• Simulation results.



Lithium Tokamak Experiment (LTX) 3

• Studies the plasma-material interaction of liquid 
Lithium (Li).

• B = 0.3 T.

• Neutral beam injection heating.

• Fast ion means energies > 10 keV.

• Why LTX is important?

• ITER has a tungsten wall, which is high-Z (74) material.

• LTX walls are coated by low-Z (3) Li to reduce recycling.

• Recycling - when cool particles are re-introduced 
back to main plasma.

Wikipedia



Why are fast ions important? 4

• Fast ions heat the plasma and supply particles to its core.

• They may escape either at first orbits or due to collisions with the plasma.

• Simulating the ion losses at collision time scales (> 10 ms) is a challenge.

• Past simulations used a bi-cubic spline approximation for calculations of 
magnetic field

• Issues at large times because of discontinuous first derivative at mesh boundary.

• A Chebyshev approximation is developed here to resolve this issue.

• Goal: Simulate particle losses in a fast way



• Values range from -1 to 1 on the domain [-1,1].

• Complete orthonormal system.

Orthogonality identity

Chebyshev nodes

1D Chebyshev Polynomials 5

Definition of polynomials



1D Chebyshev Approximation of a Function 6

• Approximate a function as a sum of the first N 
Chebyshev polynomials.

• The coefficients 𝑐𝑖 are determined through 
summing the overlap at the Chebyshev nodes.



≈

2D Chebyshev Approximation 7

• This extends to 2D, where the functions are 
multiples of the Chebyshev polynomials.

• The same orthogonality identities hold, so 
the coefficients 𝑐𝑖𝑗 are determined the same 

way.

• Our code evaluates a 2D approximation of 
the magnetic potential.

• First partial derivatives are used to calculate 
the magnetic field.



Computational Methods 8

• GPU is much faster through 
massive parallelism.

• Useful for calculating the 
Chebyshev representation for 
> 100,000 particles.

• Varying particle number and 
measuring time to evaluate the 
magnetic field.

• Initial offset is due to loading variables 
onto GPU.

40.4 

seconds

0.094 

seconds!



Algorithm structure 9

• Codes written in C and CUDA C.

• Use the Soloviev solution to the Grad-Shafranov equation to find the 
magnetic potential.

• Approximate the magnetic potential using the Chebyshev representation 
and find the first partial derivatives with respect to r and z.

• For each particle,

• Calculate the magnetic fields using the Chebyshev representation.

• Generate the time derivatives of particle position and velocities.

• Use Runge-Kutta-4 algorithm for full orbit calculations.



Results: Single particle orbits 1/6 velocity 10



Results: Single particle orbits 1/6 velocity 11
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Results: Single particle orbits 1/6 velocity 13



Example particle orbit in the r-z plane. 14



Conclusion 15

• I learned how to use C and CUDA to successfully build a partial kinetic code!

• GPU speeds up calculations.

• Observed orbits are consistent with theory.

• Issues at large time steps. Limited accuracy of RK4

• Fully kinetic codes are computationally intensive (1 million steps for each 
particle).

• It is not feasible to simulate all particles, just the few important ones.

• The Chebyshev approximation, being compact and smooth, is suitable for 
GPU.

• We need more testing with realistic magnetic configurations.



16

Thank you!


