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PFRC-II Pulse




Topics Discussed in this Presentation

What is PFRC-II?
PFRC-II and the need for Spectral Diagnostics
Use of a Collisional Radiative Model to output Electron Temperature Data

Current Observations
Future Work




PFRC-II

« Princeton Field Revered
Configuration (PFRC)
» “High Beta” plasma containment
device
« Relies on an Odd-Parity Rotating

Magnetic Field
« Comparatively easy to maintain
and construct
 Potentially viable for advanced
fusion fuel cycles.




Visible Light Emitted by PFRC-II / 4
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 Visible light from PFRC-II can be 55610 5 Ha
used to analyze certain parameters
in the plasma.
» Relating net emissions of the
Balmer Series provides incite into m
the plasma over the course of a st s

pulse.
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The Collisional Radiative Model and Emission Rates

---- Input ---- ---- Output ----
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CRM Generated Emission Rates of H gamma and H beta
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CRM Generated Emission Rates of H gamma and H beta

CRM Ratio for Hgamma vs.

H2 — All Molecular
Hydrogen

H — All Atomic
Hydrogen

colour

H-010eV
H-060eV
H-100eV
H-250eV
H-900eV
H2-010eV

8
©
o
P
=
)
£
£
@
>
I

Expecting a
Hgamma-Hbeta
ratio between 0.29
- 0.13




PFRC-II Pulse Aspects / 8

« The graph shows the plasma
density over the duration of a

PFRC-II pulse.
« Densification caused by

acceleration and heating due to the
Rotating Magnetic Field.




Plasma Data during PFRC-II Pulse / 9

Densification Electron Temperature (eV)

01 o2 (

) 03 0.4
Electron Density (fcc)

0.2 o3
Ratio H2/H

.02 03
Ratio Hg/Hb

» The graphs show electron
temperature and the three o e e,
parameters of the CRM over time

Electron Temperature (eV)

around the densification and gas
puff stages of a PFRC-II pulse.
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Plasma Data during PFRC-II Pulse / 10

Densification Electron Temperature (eV)
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« The graphs show electron
temperature and the three
parameters of the CRM over time
around the densification and gas
puff stages of a PFRC-II pulse.

 Significant issue with the Ratio
between Hg/Hb during
densification.
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Monochromator Alignment Issues / 11

— H Beta

—— H Gamma

—— Background Beta
—— Background Gamma

« Data generated by the
monochromator during the PFRC-
IT pulse.

« H Gamma should happen after H
beta since H Gamma since H
Gamma is — Hbern

— H Gamma
—— Background Beta
—— Background Gamma




Replacing Monochromator with Spectrometer

« The Czerny-Turner

Monochromator is in the process

of being replaced by a
Spectrometer.

* Visible light of various wavelengths
will be collected at the same time.
Eliminates alignment issues with
emission measurements.

Monochromator
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A. Incoming light source B. Entrance slit

C. Collimating mirror D. Grating on turret
E. Focusing mirror F. Exit slit

G. Single channel detector

Spectrometer
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A. Incoming light source B. Entrance slit
C. Collimating mirror D. Grating on turret
E. Focusing mirror F. Multichannel detector



Future Work and Data Verification

* QOcean Optics Spectrometer is now
installed and will be collecting data.
» Scripts have been updated to take in
data in its new format.
« Data needs to be taken to ensure

the spectrometer fixes the
alignment issue with emission data.
« Comparing Electron Temperature
values from H beta and H alpha
ratio to H gamma and H beta ratio.
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Optical Diagnostics Schematic for PFRC-II (Extra)
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For future testing, the Monochromator will be replaced by an Ocean Optics Spectrometer




