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MAST

There is a lot going on into a plasma
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There is a lot going on into a plasma (including rubbish)
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Courtesy of Filippo Scotti [LLNL]
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Fusion plasma physics encompasses a wide range of spatial 
and temporal scales
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

In a tokamak these scales are all coupled
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

Particles and energy are ‘confined’ by magnetic fields
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

and they can also ‘flow’ along open magnetic field lines
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

Plasmas in a tokamak are in contact with the ‘wall’
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

Plasmas in a tokamak need to be ‘heated’
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External heating

Radiofrequency waves
Neutral beams

Fueling

Gas injection
Pellets

The plasma is surrounded
by solid structures:
Plasma-material interactions

Confined plasma
(closed magnetic field lines)

Scrape-Off Layer plasma (SOL)
(open field lines)

Microturbulence, 
ionization, 

recombination
radiation

MHD 
equilibrium/instabilities, 

microturbulence, 
energetic particles

Plasmas need frequent pit stops for ‘re-fueling’
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Modeling a tokamak is like playing with LEGO® 
… all you need is a lot of bricks, the good ones

www.iter.org
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Transformer: source
of poloidal flux Auxiliary

H&CD

External 
momentu

m

a-heating

kinetic profiles

Heat, particle &
Momentum fluxes 

Transport coefficients
Turbulent & neoclassical

Magnetic flux
diffusion Conductivity

profiles

Self-generated
current 

Actuators (external)

CD

H
Fuelling 

& pumping

Wall sources
and sinks

A tokamak simulator needs to connect fast (transport)                    
and slow (current diffusion) time scales

Plasma (internal)
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Transformer: source
of poloidal flux

Actuators (external)

Plasma (internal)

Central solenoid
Primary circuit

Plasma current
Secondary circuit

Toroidal field

Helical field

Poloidal field

Magnetic flux diffusion

A tokamak is a transformer, but the secondary circuit is a 
conducting fluid … sooo complicated

transport
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A plasma in equilibrium can be described by ideal MHD 
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[Credit, DIFFER website, The Netherlands]

Equilibrium condition:

Þ j, B lie on nested surfaces
Þ j, B, p are described by a flux function y

Þ equilibrium entirely defined by:

j⇥B = rp

B ·rp = 0 j ·rp = 0
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The first step is to get all coil currents and plasma shape right
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Transformer: source
of poloidal flux Auxiliary

H&CD

External 
momentu

m

a-heating

kinetic profiles

Heat, particle &
Momentum fluxes 

Transport coefficients
Turbulent & neoclassical

Magnetic flux

diffusion Conductivity
profiles

Self-generated
current 

Actuators (external)

CD

H
Fuelling 

& pumping

Wall sources
and sinks

The second step is a good model for core transport

Plasma (internal)
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Separation of scales enables representing (almost) any 
transport problem as a diffusion/convection-like problem
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The goal is to obtain a set of diffusion-like equations in the form: 

Þ for a physical variable Q
Þ identify the flux G
Þand the source and sink terms contained in S

@Q

@t
+r · � = S(Q, r, t)
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Understanding and modeling tokamak turbulent 
transport requires theory-based prediction of flux-
gradient relationships

Gyrokinetic prediction
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G. Staebler, Phys. Plasmas 
(2016)

State-of-the-art multi-scale (ri®re)
~50M CPU-hrs for 3-point scan
[N. Howard, Nucl. Fusion (2016)]

fluid eq. with right closure =>
Fit over limited set of GK 
(< 1 sec with NN)
[Citrin NF 55 (2015), Meneghini, NF 57 (2017)]

6D Vlasov equations => 5D nonlinear “gyrokinetic” GYRO

TGLF
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Transformer: source
of poloidal flux Auxiliary

H&CD

External 
momentu

m

a-heating

kinetic profiles

Heat, particle &
Momentum fluxes 

Transport coefficients
Turbulent & neoclassical

Magnetic flux
diffusion Conductivity

profiles

Self-generated
current 

Actuators (external)

CD

H
Fuelling 

& pumping

Wall sources
and sinks

The third step is realistic models for heating, current and 
momentum

Plasma (internal)
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External sources do more than providing heating and current:
they can provide momentum and control of MHD instabilities

RF antennas (IC, LH),
Gyrotrons (EC)

Neutral beams (NB)

Ion heating

Current drive

MHD 
co

ntr
ol

rotation

electro
n

heating

NB

EC

IC

co
lli

si
on

s

LH
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Perturbation of equilibrium enables description of waves 
propagation by representing the plasma with a dielectric 

tensor
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K̄ = Ī+
i

✏0!
�̄

Heating, 
current
profiles

density, 
temperature

Magnetic 
equilibrium

Dielectric tensor

full wave solver
(TORLH)
<106 CPU Hours

[courtesy of S. Shiraiwa (PSFC), VI2.00003]

CMod plasma
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Ray-tracing equations are accurate (and fast) approximations 
of high frequency wave propagation
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Ray-tracing equations
dispersion relation

(another) CMod plasma
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Heating, 
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profiles
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temperature Dielectric tensor

Magnetic 
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Let’s put everything together …
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TRANSP is a 1.5D equilibrium and transport solver 
for tokamak plasma simulations developed at PPPL
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We have learnt from modeling of ITER that the 
ramp-up phase is critical for sustainment of qmin
as much as a correct choice of H&CD mix
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• slower current ramp-up rate
• Early RF core heating
=> Delay current penetration and q relaxation 
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• Core electron heating and current early
• Off-axis current after H-mode formation
Þ Sustains bootstrap current at mid-radius
Þ Prevents q relaxation
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Time-dependent modeling of current ramp-up has 
highlighted the role of RF to heat the plasma
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• Minimize power needs to obtain 
the same current

Everything works on paper …

The challenge now is to 
demonstrate it in experiments.
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Time-dependent application:
assessment of O-X-B startup in NSTX-U
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[N. Lopez (Princeton University) PPCF 2016]

Used TRANSP to assess the propagation and 
conversion of EC waves in NSTX-U

GOAL: find optimal launching geometry
that maximizes both heating and current
that does not make the plasma unstable
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Used integrated modeling to design experiments 
BEFORE going to the control room
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Early EC step-ups
Improved qmin trajectory

High β

● Feed-forward NBI and EC predicted first with TRANSP (no feedback)
● Improved access to high beta with little MHD
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What is missing?
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Transformer: source
of poloidal flux Auxiliary

H&CD

External 
momentu

m

a-heating

kinetic profiles

Heat, particle &
Momentum fluxes 

Transport coefficients
Turbulent & neoclassical

Magnetic flux

diffusion Conductivity
profiles

Self-generated
current 

Actuators (external)

CD

H
Fuelling 

& pumping

Wall sources
and sinks

What happens close to the plasma wall is very important

Plasma (internal)
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Edge transport and fuelling are critical ingredients to model 
the plasma evolution in burning plasma conditions
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PSOL

Courtesy of R. Pitts (ITER Organization)

Recombination zone
(Te<1eV)

Neutral friction zone

H0/D0/T0 ionization zone
(Te>5eV)

Impurity radiation zone

Heat conduction zone
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Hybrid approach to modeling of RF wave propagation is a 
promising avenue towards implementation in tokamak

simulator

32

Core: Axisymmetric flux surface grid
Hot plasma conductivity
Dense Matrix Solver
Edge: Unstructured mesh with 
complicated geometry (either 2D or 
3D)

Cold plasma with collision.

Boundary: matching technique to 
build integrated solution

Would benefit from realistic model of SOL

Courtesy of S. Shiraiwa (PSFC)
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Integrated Tokamak Modeling offers plenty of 

opportunities to understand and model experiments 

(we have collaborations all over the world)

… and it is a lot of FUN !

JOIN OUR TEAM

fpoli@pppl.gov

33


