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We need energy research because we have a looming
worldwide energy crisis

• World energy use will double by ~ 2045

• Continued reliance on fossil fuel will likely cause 

unacceptable climate changes

• A substantial R&D program is needed to develop 

alternative sources of energy

– Nuclear power from fission plants should be the 

bridge to the future

Ø Improved public education needed
– Fusion energy R & D is one of the high-risk, high-

reward ventures in the U.S. and abroad
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Outline

• Fusion reaction basics (interactive Q/A session)

• Challenge of managing interactions between the 
plasma and the surrounding wall - how do you stop 
the wall from melting?
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Fusion is a Nuclear Process in which Light Nuclei 
Fuse into Heavier Ones

• During fusion, a small part of the reactant mass is converted to 
energy through Einstein’s equation: E=mc2



5

Stellar Fusion is a Naturally Occurring Example

• Shown at right is the proton-proton 
chain, dominant in our sun
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Fusion between deuterium and tritium is the one 
used in reactor designs
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For Conventional Fusion, Atomic Nuclei Must 
Collide at High Energy

• High energy input is required
– Atoms heated to high temperatures
– Electrons break free from nuclei
– Free electrons, ions form a plasma which has ~ zero net charge

• Examples: lightning, aurora, fluorescent lights, sun, magnetosphere

• Plasma ions must be heated enough to overcome the longer-range 
electric repulsion force

• Ions must be close-enough for nuclear attraction force to dominate
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How hot does the plasma need to be for 
fusion?
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There are Several Ways of Confining Plasmas

Requires large 
amounts of mass!

Confines the plasma in the 
direction across the 
magnetic field

Energy and defense 
relevant
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Magnetic fields confine the plasma in the direction 
across the magnetic field

• Force on a charged particle in a magnetic field: 
F = q v X B

• Electromagnetic forces are much stronger than gravity!
Felec ~ q1q2/r2, Fgravity ~ m1m2/r2

Felec / Fgravity ~ 1026 for two 
protons!

• Another way to express this:
– Stars need between 5000 and 25,000 times the mass of the earth 

for fusion to begin, or about 1029 pounds
– A new international fusion device under construction in France 

(ITER) uses 20 million pounds of electromagnetic coils to confine 
the plasma for fusion to ‘begin’

MITER_coils / Mstar ~ 1022 (mechanical advantage)
How big is that number? Think of it like a ratio of distances: 
The size of an atom to the distance between the sun and Pluto
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Issue: magnetic fields don’t restrict plasma motion along 
the field, so plasma leaks out 

• Force on a charged particle in a magnetic field: 
F = q v X B

• How to solve problem of end losses in a linear fusion device
– Increase the magnetic field strength at the ends relative to center 

(‘magnetic mirror’), but this is imperfect
– Bend the linear device into a circle: no beginning or end!

– Better, but still imperfect 

ITER
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The international fusion community has agreed to build 
ITER, a giant step toward energy production

ITER • Seven international partners
– EU

– Japan

– US

– Russia

– China
– Korea

– India

• Being built in France

– Construction finished ~ 2018

– D-T plasmas in 2026
• Pfusion = 500 MW for 1000 sec 

discharges

• Pfusion = 250 MW in steady state



13

How do we heat up the gas to these astonishingly high 
plasma temperatures?

• Resistive heating
– We induce a high current through the plasma (millions of amperes)

– The plasma has an electrical resistance, and we get resistive or 
‘ohmic’ heating

– Analogous to resistive heating in a circuit: Pheat= Iplasma2 Rplasma

– Issue: as plasma gets hotter, Rplasma goes down, less efficient

• Wave heating
– Like heating food, except that the right wave frequencies are 

determined by plasma properties and magnetic field

– Most effective heating done by radio waves, not microwaves

• Heating with energetic neutral beams, like accelerators
– Accelerator portion produce charged particles

– Those are converted back to neutrals to penetrate magnetic fields

– The energetic neutrals transfer energy to plasma inside device
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Once we’re successful at heating plasmas, how do 
we measure their properties?

• We measure passive electromagnetic radiation emission
– Plasma emits in all parts of the spectrum, from the X-ray to the 

Infrared 

– The most energetic emission (X-rays) come from the center, while 
the least energetic emission (Infrared) comes very near the wall

– Visible emission comes from the very edge of the plasma, and can 
be measured with (fast!) cameras



15

Once we’re successful at heating plasmas, how do 
we measure their properties?

• We measure passive electromagnetic radiation emission
– Plasma emits in all parts of the spectrum, from the X-ray to the 

Infrared 
– The most energetic emission (X-rays) come from the center, while 

the least energetic emission (Infrared) comes very near the wall
– Visible emission comes from the very edge of the plasma, and can 

be measured with (fast!) cameras

• We also actively probe the plasma, e.g.
– Thomson Scattering: laser beam fired at the plasma, and scattered 

beam properties tell us local electron density, temperature

– Charge Exchange Recombination Spectroscopy and Motional 
Stark Effect: we examine the interaction of the plasma with the 
neutral beam for information on the ion temperature, rotation 
speeds, and magnetic field pitch
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Outline

• Fusion reaction basics

• Challenge of managing interactions between the 
plasma and the surrounding wall - how do you stop 
the wall from melting?
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Major challenge: plasma core ~ 150 million K, wall 
must be kept < 2000 K 

• Fusion plasmas must be kept very pure with 
hydrogen isotopes
– Impurities from the walls cause a lot of (electron line) 

radiation that cools the plasma and quenches fusion
– The radiation gets higher as the atomic number of the 

impurity increases
– On the other hand, the rate at which impurities are 

generated can decrease as the atomic number       
increases 

* Helium is a natural by-product (“ash”) of fusion, and it can 
be tolerated to 10% concentration in the core

• To insure plasma purity, fusion chambers are ultra-
high vacuum ~ 10-11 atmospheres
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Plasma-material interface: how do you keep the hot 
part hot and the cold part cold?

• Basic answer is mass difference
– In ITER, there is less than ½ gram of deuterium and tritium 

in the core
– The total mass of ITER is nearly 50 million pounds; a 

fraction of this is in the plasma facing components, which 
will absorb the heat 

– The internal components of ITER will be actively cooled to 
keep temperature below melt limits

• The present technological heat flux removal limit is 
about 10 million W/m2

– A rocket nozzle has average heat flux of 1 million W/m2!
– The sun’s radiant heat flux on earth ~ 1400 W/m2
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Fusion is an exciting research area with engaging science 
and technology

• Vibrant area with substantial domestic and 
international effort

• Engineering the plasma-material interface is critical to 
the success of fusion

• Students can make meaningful contributions!

Thank you for your attention, and this opportunity!


