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Outline

• Introduction to magnetic confinement and tokamaks

• Plasma exhaust via magnetic X-point divertors
– Particle exhaust
– Momentum and power exhaust
– Recently identified challenges to attractive core-edge plasma 

scenarios with W walls

• Types of transient events, and their impact
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Critical challenge for fusion: keeping the core hot and 
and the plasma facing components ‘cold’

Solid material limits

Need to exhaust

• Plasma particles

• Plasma momentum

• Plasma energy

3

1 eV ~ 11,600 K
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Ways of confining plasmas

Requires large 
amounts of mass!

Confines the plasma in the 
direction across the 
magnetic field

Energy and defense 
relevant
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Origin of the tokamak

• Original idea was to use a concentrated magnetic field 
on the end of a linear system, to reflect particles back 
into main chamber (‘magnetic mirror’)
- Suffered from ‘end loss cone’

• In the 1960’s, Russian scientists proposed a doughnut-
shaped device with ‘axial’ or toroidal magnetic field for 
stability, and ‘azimuthal’ or poloidal field for 
confinement, driven by a current in the plasma

- Particles saw no beginning or end -> high confinement!

Toroidal field coils

Plasma current
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‘H-mode’: a strong gradient of density, temperature & 
pressure near plasma edge

66

NSTX-U data, 
Courtesy of 
D. Battaglia

• Sharp increase in edge 
density, temperature, 
pressure observed in 
tokamaks in 1982 –
called ‘H-mode’

• Core sits on top of a 
‘pedestal’ – more stored 
energy for same input 
power –> improved 
energy confinement
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‘H-mode’: a strong reduction in edge plasma turbulence

77

NSTX data, Courtesy of S. Zweben
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The international fusion community has agreed to 
build a large tokamak toward energy production

ITER
• Seven international partners

– EU
– Japan
– US

– Russia
– China
– Korea
– India

• Being built in France
– First plasma ~ Dec. 2025

• Pfusion = 500 MW for 1000 sec 
discharges

• Pfusion = 250 MW in steady state
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Plasma-material interactions: how do you keep the hot 
part hot and the cold part cold?

• Answer: mass difference!
– In ITER, there is less than ½ gram of deuterium and tritium 

in the core
– The total mass of ITER is nearly 50 million pounds; a 

fraction of this is in the plasma facing components, which 
will absorb the heat 

– The internal components of ITER will be actively cooled to 
keep temperature below melt limits
* The key is to maximize heat dispersal area

• The present technological heat flux removal limit for 
solids is about 10 MW/m2

– A rocket nozzle has average heat flux of 1 MW/m2!
– The sun�s radiant heat flux on earth ~ 1400 W/m2
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Outline

• Introduction to magnetic confinement and tokamaks

• Plasma exhaust via magnetic X-point divertors
– Particle exhaust
– Momentum and power exhaust
– Recently identified challenges to attractive core-edge plasma 

scenarios with W walls

• Types of transient events, and their impact

1010

R. Maingi, ‘Plasma Exhaust’, chapter in Magnetic Fusion Energy: from Experiments to Power Plants, G.H. 
Neilson, editor, Woodhead Publishing, Elsevier Press, (2016) 31-59. 
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Limiters and divertors used to exhaust plasma

11

• A limiter is a surface in contact 
with the plasma
– Can be inserted (sacrificial) or part 

of surrounding wall structure
– Examples of inner wall and outer 

wall limiters shown at right

• If external current is run in the 
same direction as plasma 
current outside of the confined 
plasma, then one component of 
the field can be canceled, 
creating an X-point divertor

Bq=I/(2πa)
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Divertors used to exhaust plasma and reduce PMI at wall

12

Y. Feng et. al., Nucl. Fusion 46 (2006) 807 
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• In a divertor, edge plasma flows 
across closed magnetic flux 
surfaces into the scrape-off layer

• Plasma flows along open 
magnetic field lines in the SOL to 
the divertor target
- Can have one or more X-points, 

e.g. 1, 2, or even 8!
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Divertors, cryopumps, and structures to restrict neutral flow 
(baffles) can provide particle control

13

M. Wade et. al., PRL 74 (1995) 2702 

M.A. Mahdavi et. al., J. Nucl. Mater. 220-222 (1995) 13 

• Both D/T (fuel) and He (ash) 
need to be exhausted 

• In-vessel cryopumps control 
deuterium and He inventory
- Divertor particle flux can be captured 

and exhausted
- ITER designed with cryos

R. Maingi et. al., Nucl. Fusion. 39 (1999) 1187 
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Tritium retention is a central element of particle exhaust, and 
strongly affected by choice of PFC materials

14

G. Federici et. al., Nucl. Fusion 41 (2001) 1967 

• Graphite was PFC of choice in 90’s, 
but it captures hyrogenic species via 
unsaturable co-deposition 
- e.g. Graphene & Zn shown on right

• C advantages
- Good power handling, good thermal shock and 

thermal fatigue resistance (low crack propagation)
- Doesn’t melt (but sublimes), low radiated power
- Good joining technology, low-Z

• C disadvantages
- Chemical erosion and co-deposition; dust generation
- May require conditioning
- Physical and mechanical properties degrade w/low 

neutron fluence
Roubin et al., J. Nucl. Mater. 390-391 (2009) 49  

Co-deposits in Tore Supra
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W chosen for divertor & Be for wall of ITER 
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G. Federici, et. al., Nucl. Fusion 41 (2001) 1967 

• W advantages
- Low physical sputtering yield; high threshold
- No chemical sputtering with hydrogen
- Low in-vessel tritium retention at T < 500 oC
- Reparable by plasma spray; good joining technology

• W disadvantages
- Low allowable core concentration
- Melts under large transient loads 
- High ductile-brittle transition temperature
- Recrystallizes (embrittles) at temperatures >1500 K
- High activation
- Blisters and generates ‘fuzz’ under He bombardment
- Confinement reduced in tokamaks as compared with carbon PFCs
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Components in present and past fusion devices

16

Device Lim/Div PFC mat’l Device Lim/Div PFC mat’l

JET (2012+) Divertor W div. & Be wall JET Divertor Carbon

ASDEX-U Divertor W divertor & wall ASDEX-U Divertor Carbon

C-Mod Divertor Mo divertor & 
wall

DIII-D Divertor Carbon

NSTX Divertor C Wall/Li coating NSTX-U plan Divertor High-Z + Liq. Li

RFX Limiter Liq. Li - Mo mesh LTX Limiter Liq. Li on SS

JT-60U Divertor Carbon TFTR Limiter Carbon

Tore Supra Limiter Carbon West Divertor W wall

EAST Divertor W upper, Mo 
wall, C lower

KSTAR Divertor Carbon

MAST-U Divertor Carbon COMPASS Divertor Carbon
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Critical challenge: keeping the core hot and and the plasma 
facing components ‘cold’ via magnetic divertors

Solid material limits

Need to exhaust

• Plasma particles
- Recapture tritium

• Plasma momentum
- Plasma is spinning in the 

core, either spontaneously or 
from momentum injection

- Sheath accelerates ions at 
PFCs

• Plasma energy
- Plasma heated by fusion, 

simulated with neutral 
beams & RF heating

17

1 eV ~ 11,600 K

17

B.L. LaBombard et. al., Phys. Plasmas 2 (1995) 2242 
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Plasma momentum exhaust

18

• Plasma spins in the core spontaneously, which is good for 
stability and confinement
- Problem if rotation goes to zero (locked mode) – confinement loss

• Sheath forms at PFC for equal ion and elec. flux
- Pre-sheath accelerates ions to sonic speed

Ø Bohm criterion: local Mach number u/cs = 1
- Sheath accelerates ions through a ~ 3kTe potential drop 
- This plasma momentum is naturally exhausted at PFCs

• Charge exchange between plasma 
ions and neutrals (recycling, beam 
input) reduces plasma momentum
- Becomes important for Te < 10 eV
-Manifests as a reduction in plasma  

pressure at low Te

Courtesy of J.L. Terry
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Power flow in the scrape-off layer to the divertor depends on 
density and collisionality

19

• Sheath-limited: the 
midplane and divertor
Te are about equal
- Pressure is same at 

midplane and divertor
• Flux-limited: the 

divertor Te is below 
midplane
- Pressure is same at 

midplane and divertor
• Detached: the divertor

Te is ~ 1-2 eV
- Pressure in divertor well 

below midplane
- Recombination observed B.L. LaBombard et. al., Phys. Plasmas 2 (1995) 2242 

Sheath Flux Detached

1907/11/2019 R . M aingi PPPL SU LI 2019 lecture



Divertor radiation and detachment used to reduce plasma 
heat flux onto PFCs

20

C.S. Pitcher et. al., Plasma Phys. Contr. Fusion 39 (1997) 779 

• At high density, divertor radiation 
occurs somewhere between the X-
point divertor and PFC
- Low-Z impurity radiation zone: 1-10 eV
- Deuterium ionization front: 5 eV
- Recombination zone: 1-2 eV

• Can be represented in 1-D
A.W. Leonard et. al., PRL 78 (1997) 4769 

M.E. Fenstermacher et. al., Plasma Phys. 
Contr. Fusion 41 (1999) A345 
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Difficulties for W PFCs to achieve attractive, self-consistent 
core-edge scenarios have been identified

22

• Power exhaust challenge harder 
than thought
- Heat flux footprint decreases 

with Ip; no increase with R
Ø Both steady and transient loads 

can exceed solid PFC limits

• Confinement difficult with bare 
high-Z PFCs
- Good confinement is 

challenging with high-Z walls 
in e.g. JET

22

Outline
• Plasma exhaust via 

magnetic X-point 
divertors
– Particle exhaust
– Momentum and 

power exhaust
– Recently identified 

challenges to 
attractive core-edge 
plasma scenarios 
with W walls

07/11/2019 R . M aingi PPPL SU LI 2019 lecture



Heat flux profile measured in divertor with infrared thermography & 
compared to midplane ne and Te profiles

23
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M.A. Makowski et. al., Phys. Plasmas 19 (2012) 056122 
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Steady heat flux flows in the SOL in a very narrow channel

24

• Heat flux profile width lq
measured in divertor
- lq projected to outer midplane

with flux expansion
• International effort found that 
lq varies inversely with Bpol,MP

- No increase with R, PSOL

- Low gas puff attached plasmas; 
some broadening and heat flux 
dissipation with detachment

• Projected width in ITER ~ 1/5 
previous value; peak heat flux 
5x higher unless mitigated

• Much more challenging for 
reactors, due to higher Pfusion T. Eich et. al., Nucl. Fusion 53 (2013) 093031

ITER
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Edge and core plasma temperature and confinement was 
reduced in JET scenarios with installation of ITER-like wall

25

M. Beurskens et al., PPCF 55 (2013) 124013
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Several divertor innovations may increase the heat dispersal 
area for future (and present!) devices

26

Snowflake divertors

+ -

P. Valanju et. al., Nucl. Fusion 16 (2009) 056110D. Ryutov et. al., Phys. Plasmas 14 (2007) 064502

Super-X divertor in MAST-Upgrade

2607/11/2019 R . M aingi PPPL SU LI 2019 lecture



Liquid metal PFCs are an option to solid PFCs, but have 
substantial R&D needs to assess viability

27

• Advantages

- Erosion tolerable from PFC view: self-healing surface 

- No dust; main chamber material and tritium transported to divertor

could be removed via flow outside of tokamak

- Liquid metal is neutron tolerant; protects substrate from PMI

- Liquid (and solid) lithium offer access to low recycling, high 
confinement regimes under proper conditions

- Very high steady, and transient heat exhaust, in principle (50 MW/m2 

from electron beam exhausted; also 60 MJ/m2 in 1 µsec)

• Disadvantages and R&D needs

- Liquid metal surfaces and flows need to be stable

- Liquid metal chemistry needs to be controlled

- Temperature windows need optimization

* Most of experience in fusion is with Li, but Sn and eutectics (e.g. Sn-Li) 
offer some promise in terms of broader temperature windows
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Lithium (solid and liquid) PFCs can enhance confinement

28

• 2-4x improvement over ITER98P(y,2)
(H-mode scaling)

• H98y2 increased from 0.8 -> 1.4 
(H-mode scaling)

NSTX

J.C. Schmitt et al, Phys. Plasmas 22 (2015) 056112   

LTX

D.P. Boyle et al., J. Nucl. Mater. 438 (2013) S979   
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Outline

• Introduction to magnetic confinement and tokamaks

• Plasma exhaust via magnetic X-point divertors
– Particle exhaust
– Momentum and power exhaust
– Recently identified challenges to attractive core-edge plasma 

scenarios with W walls

• Types of transient events, and their impact
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What if the heat flux from the plasma is time-varying?

• The heat flux from the plasma is indeed variable in 
time, with a �DC� component and periodic eruptions
– The biggest problems are �disruptions�, when the plasma 

current and energy quenches in ~ milliseconds; ITER must
either avoid disruptions or mitigate their effects!

– More periodic events include edge localized modes (ELMs), which 
can eject 10% of the plasma energy in ~ 0.5 msec

– Turbulence (thermodynamic) and other instabilities can 
regularly release up a few tenths of plasma energy rapidly

• Substantial research goes into understanding and 
controlling transient events in fusion devices
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NSTX-U Facility Parameters
Major Radius 0.90 m
Minor Radius ≤ 0.55 m
Plasma Current ≤ 2.0 MA
Toroidal Field ≤ 1.0 T
Neutral Beam Power ≤ 12 MW
RF Heating ≤ 6 MW
Pulse Length ≤ 10 sec

NSTX was a fusion research facility at PPPL, presently 
undergoing a major upgrade
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ELMs are periodic eruptions in ‘H-mode’ plasmas (NSTX)
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ELMs are periodic eruptions in ‘H-mode’ plasmas (MAST)
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Solar flares are also periodic eruptions
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What Are Edge Localized Modes (ELMs)? Most likely 
violations of ideal or resistive MHD stability limits

• Plasmas undergo a transition from low (L-
mode) to high (H-mode) when enough 
heating power is added

• The edge plasma pressure develops a 
stair-step or �pedestal� in H-mode
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ELMs expel plasma from the low field side, which is prone to 
ballooning-type pressure driven modes

• Plasmas undergo a transition from low (L-
mode) to high (H-mode) when enough 
heating power is added

• The edge plasma pressure develops a 
stair-step or �pedestal� in H-mode

• The steep edge pressure gradient and/or 
edge current can destabilize Edge 
Localized Modes (ELMs), where a portion 
of the pedestal pressure and energy is 
periodically expelled 
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What Are Edge Localized Modes (ELMs)?

• Plasmas undergo a transition from low (L-
mode) to high (H-mode) when enough 
heating power is added

• The edge plasma pressure develops a 
stair-step or �pedestal� in H-mode

• The steep edge pressure gradient and/or 
edge current can destabilize Edge 
Localized Modes (ELMs), where a portion 
of the pedestal pressure and energy is 
periodically expelled 
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Plasma fluxes from ELMs on outer wall and divertor are 10 
times higher than steady inter-ELM fluxes
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J.W. Ahn et. al., J. Nucl. Mater. 438 (2013) S317
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ELM simulators used to assess ELM heating limits in ITER 

• Russian ELM simulator, 
showing damage to 
Tungsten surface with 
ITER ELM-like plasma 
bombardment of 
Tungsten

• After 100 simulated 1.6 
MJ ELMs, substantial 
tungsten melting that 
covers gaps between tiles

Zhitlukhin et. al. J. Nucl. Mater. 363 (2007) 301
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ELMs can be avoided or mitigated in several ways

Ø ELMs are caused by having too much pressure 
and/or current near the plasma boundary

Solutions:
• Trigger rapid, tiny ELMs with pellets
• Apply additional 3-D fields to eliminate ELMs

– Tiny leak in magnetic bottle - pressure relief

• Operate with some other instability that relieves the 
plasma pressure continuously – ‘quiescent’ modes

• Operate far away from large, naturally occurring ELM 
conditions, or in tiny ELM conditions

• Widen the ELM-stable operating window
– One way to do this is to change the plasma characteristics 

responsible for ELMs -> lithium or boron powder injection

40

Review: R. Maingi, Nucl. Fusion 54 (2014) 114016 
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ELMs eliminated with either 3-D magnetic perturbations, or 
naturally via access to a Quiescent H-mode

46

T.E. Evans et al., Nature Phys. 2 (2006) 419

Magnetic Perturbations
D3D
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A. Bortolon et al., Nucl. Fusion 56 (2016) 056008

Pellet ELM pacing
D3D

Li Pellets

no Pellets



ELMs eliminated naturally via access to a Quiescent H-mode 
or via boron powder injection triggering quiescence

47

K.H. Burrell et al., Nucl. Fusion 53 (2013) 073038 

Quiescent H-mode D3D
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B powder injection EAST (May 2019)

B injection
B inj.
No B Stored Energy [kJ]

Density [1019 m-3]

Z. Sun et al., PRL and A. Diallo et al., NF, both in preparation

B-V edge [au]



ELMs eliminated by lithium wall conditioning or by operating 
far from instability boundaries

48

R. Maingi et al., PRL 103 (2009) 075001

Lithium conditioning NSTX I-mode C-Mod

48

A.E. Hubbard et al., IAEA 2012 paper

07/11/2019 R . M aingi PPPL SU LI 2019 lecture



Control of plasma exhaust is an exciting fusion research area 
with engaging science and technology

• Vibrant topic with substantial domestic and 
international effort

• Engineering the plasma-material interface is critical to 
the success of fusion

ü Expertise needed in all areas beyond physics and 
NE: materials science, chemistry, large scale 
computing…

ü Early career researchers can make meaningful 
contributions
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THANK YOU FOR YOUR ATTENDANCE
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