
Introduction to parallel programming

SULI seminar series
June 20, 2019

Stéphane Ethier
(ethier@pppl.gov)

Princeton Plasma Physics Lab

Why Parallel Computing?
Why not run n instances of my code? Isn’t that parallel computing?
YES… but
• You want to speed up your calculation because it takes a week to run!
• Your problem size is too large to fit in the memory of a single node
• Want to use those extra cores on your “multicore” processor
• Solution:

– Split the work between several processor cores so that they can work in parallel
– Exchange data between them when needed

• How?
– Message Passing Interface (MPI) on distributed memory systems (works also on

shared memory nodes)
– OpenMP directives on shared memory node
– and some other methods not as popular (pthreads, Intel TBB, Fortran Co-Arrays)

Big Science requires Big Computers

Nov 2018 List of the top supercomputers in the world (www.top500.org)

15,312 nodes, 979,968 cores

SUMMIT - #1 World Supercomputer (200 PFLOPS)
at the Oak Ridge Leadership Computing Facility

• 4,600 IBM AC922 nodes
• Each node contains:

– 2 IBM Power 9 processors (42 cores)
– 6 Nvidia V100 Tesla GPUs
– 512 GB DDR4 memory for CPUs
– 96 GB HBM2 memory for GPUs
– 1.6 TB NVMe storage

• Power 9 processor
– SIMD Multi-Core (21)
– 4 hardware threads per core
– 32 kB L1 private cache, 512 kB shared

L2, 10 MB shared L3
• V100 “Volta” GPU

– 7.8 TFLOPS double precision (X 6)
• Dual-rail EDR Infiniband

interconnect between nodes

SUMMIT node architecture

Interconnect
Next
node

Interconnect
Next
node

Power9 CPU architecture

512 kB shared
L2 cache

10 MB shared
L3 cache

Cray XC40 “Cori” at the National Energy Research
Scientific Computing Center (NERSC)

• 9,688 Intel Xeon Phi processors “Knights Landing” nodes
• 68 cores per KNL node (single socket) with 4 hardware

threads per core (total of 272 threads per KNL)
• 29.1 Pflops peak (3 Tflops/node)
• Cray Aries interconnect for communication between

nodes à 36 lanes PCIe gen 3

KNL

Let’s start with the original parallelism
It’s back in fashion!

Hardware-level parallelism: VECTORIZATIONVectorization	

a[i]

b[i]

+

a[i]+b[i]

=

Scalar (SISD)

a[i]

b[i]

a[i]+b[i]

a[i+1]

b[i+1]

a[i+1]+b[i+1]

a[i+2]

b[i+2]

a[i+2]+b[i+2]

a[i+3]

b[i+3]

a[i+3]+b[i+3]

+

=

Vector (SIMD)

One operation
One result

One operation
Multiple results

for (int i=0; i<N; i++) {
 c[i]=a[i]+b[i]; }

At the inner-most loop level

Vectorization terminology
• SIMD: Single Instruction Multiple Data
• SSE: Streaming SIMD Extensions
• AVX: Advanced Vector Extension

How to vectorize?
• The compiler will take care of it…
• You just need a high-enough level of optimization

– ”–O3” is usually sufficient (gcc –O3, pgcc –O3, icc –O3)
– Check your compiler’s documentation

• You just need to make sure that the loops in your code are arranged in such
a way that the compiler can safely generate vector instructions
– Iterations (loop steps) need to be independent of each other
– Avoid branching (if-else) as much as possible
– Don’t make the loops too large (you can always split them)

Intel Xeon (Server) Architecture Codenames Intel	Xeon	(Server)	Architecture	Codenames	
•  Number	of	FLOP/s	depends	on	the	chip	architecture	
•  Double	Precision	(64	bit	double)	

•  Nehalem/Westmere	(SSE):		
•  4	DP	FLOPs/cycle:		128-bit	addition	+	128-bit	multiplication	

•  Ivybridge/Sandybridge	(AVX)	
•  8	DP	FLOPs/cycle:		256-bit	addition	+	256-bit	multiplication	

•  Haswell/Broadwell	(AVX2)	
•  16	DP	FLOPs/cycle:	two,	256-bit	FMA	(fused	multiply-add)	

•  KNL/Skylake	(AVX-512)	
•  32	DP	FLOPs/cycle:	two,	512-bit	FMA		

•  FMA	=	(a	×	b	+	c)		
•  Twice	as	many	if	single	precision	(32-bit	float)	

Okay… I vectorized as much as I could
What’s next?

Let’s say that your problem size fits
perfectly within a node

Shared memory parallelism

• KNL “node” consists of 68
cores arranged in 4 quadrants

• All 68 cores share the
memory

• Is there a way to split the
work between all of these
cores?

Intel Xeon Phi architecture

Solution: Multi-threading
• Multi-threaded parallelism (parallelism-on-demand)
• Fork-and-Join model (although we say “spawn” for threads

and “fork” for processes).

Spawn
threads

Parallel region Parallel region

Serial
region

Serial
region

Serial
region

Spawn
threads

Destroy
threads

Destroy
threads

Process and thread: what’s the difference?
• You need an existing process to create a thread.
• Each process has at least one thread of execution.
• A process has its own virtual memory space that cannot be accessed by

other processes running on the same or on a different processor.
• All threads created by a process share the virtual address space of that

process. They read and write to the same address space in memory. They
also share the same process and user ids, file descriptors, and signal
handlers. However, they have their own program counter value and stack
pointer, and can run independently on several processor cores.

Example: Calculate pi by numerical integration
#include <stdio.h>

#include <stdlib.h>
long num_steps = 1000000;

double step = 1.0/1000000.0;
int main() {
int i;

double x, pi, sum = 0.0;

for(i = 0; i < num_steps; ++i) {

x = (i-0.5)*step;

sum += 4.0/(1.0+x*x);
}
pi = step*sum; printf("PI value =
%f\n", pi);
}

Loop-level multi-threading with OpenMP
#include <omp.h>

#include <stdio.h>
#include <stdlib.h>

long num_steps = 100000;
double step = 1.0/100000.0;
int main() {

int i;
double x, pi, sum = 0.0;

#pragma omp parallel private(x) {
#pragma omp for reduction(+:sum)
for(i = 0; i < num_steps; ++i) {

x = (i-0.5)*step;

sum += 4.0/(1.0+x*x);
}
}

pi = step*sum; printf("PI value =
%f\n", pi);
}

www.openmp.orgOpenMP is a directive-based
Programming model

Telling the compiler to process the
directives

• Most, if not all compilers can process OpenMP directives and generate appropriate
multi-threaded code.

• Be careful though. Some vendors are selling different versions of their compilers and
the OpenMP support can come under a “parallel” or “high performance” version.

• This is achieved by using an option that instructs the compiler to activate and interpret
all OpenMP directives. Here are a few examples:

– PGI compiler: pgf90 –mp and pgcc –mp
– IBM xlf: xlf90_r -qsmp=omp and xlc_r –qsmp=omp
– Linux gcc: gcc –fopenmp
– Intel (Linux): icc –openmp and ifort -openmp

• It is important to use the “thread-safe” versions of the XL compilers on the IBM
systems (Blue Gene and Power systems). They have an extra “_r” added to their
names (xlc_r, xlf90_r)

Example of OpenMP simd directive
• Make sure to use

“chunk sizes” that are
multiples of the SIMD
length (512 bits) for
best performance

• If you can’t, add the
simd modifier that can
automatically adjust
the chunk size to
match the simd length

schedule(simd:static,5)
(OpenMP 4.5)

https://doc.itc.rwth-aachen.de/download/attachments/28344675/SIMD%20Vectorization%20with%20OpenMP.PDF?version=1&modificationDate=1480523704000&api=v2

https://doc.itc.rwth-aachen.de/download/attachments/28344675/SIMD%20Vectorization%20with%20OpenMP.PDF?version=1&modificationDate=1480523704000&api=v2

What if my problem size is too large to fit on one node?
and too slow to finish in a reasonable time?

• Need to use several nodes!
• Maybe thousands of them…
• This is called “distributed memory parallelism”
• How to split the work between nodes/processors?
• Memory is not shared across nodes so how will the threads(?)

exchange data?

How to split the work between processors?
Domain Decomposition

• Most widely used method for grid-based calculations

How to split the work between processors?
Split matrix elements in PDE solves

• See PETSc project: https://www.mcs.anl.gov/petsc/

How to split the work between processors?
“Coloring”

• Useful for particle simulations
Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

Okay… but how do I do that???

MPI – Message Passing Interface
Context: Distributed memory parallel computers

– Each process has its own memory and cannot access the memory of other
processes

– A copy of the same executable runs on each MPI process (processor core)
– Any data to be shared must be explicitly transmitted from one to another

Most message passing programs use the single program multiple
data (SPMD) model

– Each process executes the same set of instructions
– Parallelization is achieved by letting each processor core operate on a

different piece of data

What is MPI?
• MPI stands for Message Passing Interface.
• It is a message-passing specification, a standard, for the vendors to

implement.
• In practice, MPI is a set of functions (C) and subroutines (Fortran) used for

exchanging data between processes.
• An MPI library exists on ALL parallel computing platforms so it is highly

portable.
• The scalability of MPI is not limited by the number of processors/cores on

one computation node, as opposed to shared memory parallel models.
• Also available for Python (mpi4py.scipy.org), R (Rmpi), Lua, and Julia!

(if you can call C functions, you can use MPI...)

Reasons for using MPI

• Scalability
• Portability
• WORKS ON SHARED MEMORY NODES AS WELL!!

Compiling and linking an MPI code
• Need to tell the compiler where to find the MPI include files and how to

link to the MPI libraries.
• Fortunately, most MPI implementations come with scripts that take care of

these issues:
– mpicc mpi_code.c –o a.out
– mpiCC mpi_code_C++.C –o a.out
– mpif90 mpi_code.f90 –o a.out

• Two widely used (and free) MPI implementations on Linux clusters are:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich)
– OPENMPI (http://www.openmpi.org)

How to run an MPI executable
• The implementation supplies scripts to launch the MPI parallel calculation, for

example:
mpirun –np #proc a.out
mpiexec –n #proc a.out
aprun –size #proc a.out (Cray XT)
srun -n #proc a.out (SLURM batch system)

• A copy of the same program runs on each processor core within its own
process (private address space).

• Each process works on a subset of the problem.
• Exchange data when needed

– Can be exchanged through the network interconnect
– Or through the shared memory on SMP machines (Bus?)

• Easy to do coarse grain parallelism = scalable

MPICH, OPENMPI

MPI Communicators
• A communicator is an identifier associated with a group of processes

– Each process has a unique rank within a specific communicator (the rank starts
from 0 and has a maximum value of (nprocesses-1)).

– Internal mapping of processes to processing units
– Always required when initiating a communication by calling an MPI function

or routine.
• Default communicator MPI_COMM_WORLD, which contains all

available processes.
• Several communicators can coexist

– A process can belong to different communicators at the same time, but has a
unique rank in each communicator

A sample MPI program in C
#include "mpi.h"
int main(int argc, char *argv[])
{
int nproc, myrank;
/* Initialize MPI */
MPI_Init(&argc,&argv);

/* Get the number of processes */
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

/* Get my process number (rank) */
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

Do work and make message passing calls…

/* Finalize */
MPI_Finalize();

return 0;
}

Basic MPI calls to exchange data
• Point-to-Point communications

– Only 2 processes exchange data
– It is the basic operation of all MPI calls

• Collective communications
– A single call handles the communication between all the processes in a

communicator
– There are 3 types of collective communications

• Data movement (e.g. MPI_Bcast)
• Reduction (e.g. MPI_Reduce)
• Synchronization: MPI_Barrier

Point-to-point communication
Point to point: 2 processes at a time

MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:
Broadcast

• One process (called “root”) sends data to all the other processes in the same
communicator

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:
Gather

• One root process collects data from all the other processes in the same communicator
• Must be called by all the processes in the communicator with the same arguments
• “sendcount” is the number of basic datatypes sent, not received (example above would

be sendcount = 1)
• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:
Gather to All

• All processes within a communicator collect data from each other and end up with the
same information

• Must be called by all the processes in the communicator with the same arguments
• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:
Reduction

• One root process collects data from all the other processes in the same communicator
and performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more
• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:
Reduction to All

• All processes within a communicator collect data from all the other processes and
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls
One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,

recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,

recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

Example: calculating p using numerical
integration

#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{

int n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
FILE *ifp;

ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);
fclose(ifp);
printf("number of intervals = %d\n",n);

h = 1.0 / (double) n;
sum = 0.0;
for (i = 1; i <= n; i++) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

pi = mypi;
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
return 0;

}

C version

#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{

int n, myid, numprocs, i, j, tag, my_n;
double PI25DT = 3.141592653589793238462643;
double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
FILE *ifp;
MPI_Status Stat;
MPI_Request request;

n = 1;
tag = 1;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

tt0 = MPI_Wtime();
if (myid == 0) {

ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);
fclose(ifp);

}
/* Global communication. Process 0 "broadcasts" n to all other processes */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads
input and

broadcast to all

Each process calculates its section of the integral
and adds up results with MPI_Reduce

…
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

pi = 0.; /* It is not necessary to set pi = 0 */

/* Global reduction. All processes send their value of mypi to process 0
and process 0 adds them up (MPI_SUM) */
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

ttf = MPI_Wtime();
printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",

myid, pi, fabs(pi - PI25DT), (ttf-tt0));

MPI_Finalize();
return 0;

}

Works with Python too!
• http://mpi4py.scipy.org/docs/usrman/tutorial.html
• mpirun -np 4 python script.py

Script.py

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

• Uses “pickle” module to get
access to C-type contiguous
memory buffer

• Evolving rapidly
• On adroit.princeton.edu:

– module load openmpi/gcc
– module load conda3
– pip install --user mpi4py

http://mpi4py.scipy.org/docs/usrman/tutorial.html

from mpi4py import MPI
import numpy
import time

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

N = numpy.arange(1, dtype=numpy.intc)
if rank == 0:

N[0] = 1000*1000*100
comm.Bcast([N, 1, MPI.INT], root=0)

start = time.time()

h = 1.0 / N[0]; s = 0.0
for i in range(rank, N[0], size):

x = h * (i + 0.5)
s += 4.0 / (1.0 + x**2)

PI = numpy.array(s * h, dtype='d')
PI_sum = numpy.array(0.0, dtype='d')
#comm.Reduce([PI, MPI.DOUBLE], PI_sum, op=MPI.SUM, root=0)
comm.Allreduce([PI, MPI.DOUBLE], PI_sum, op=MPI.SUM)

end = time.time()
print("rank:%d Pi with %d steps is %15.14f in %f secs" %(rank, N[0], PI_sum, end-start))

our PI calculation
example

What about those GPUs on SUMMIT?

• There are several ways to program for the GPUs
– CUDA (since 2007): NVIDIA-specific programming language built as an extension

of standard C language. Best approach to get the most out of your NVIDIA GPU.
CUDA kernel not portable though so it won’t work on the Intel Xeon Phi. Also
available for FORTRAN but only for the PGI compiler.

– OpenMP 4.0!! (“target” directive introduced in 2013)
– OpenACC (First release in 2011) :Compiler directives similar to OpenMP. Portable

code. Easy to get started. Available for a few compilers. More mature than OpenMP
for GPU although OpenMP is catching up…

– Libraries, commercial software, domain-specific environments, . . .
– OpenCL: open standard, platform- and vendor independent

• Works on both GPU AND CPU!!
• Even harder than CUDA though…

OpenACC example
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {

err=0.0;
#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]);
}

}
#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];
}

}
iter++;

}

MPI References
• Just google “mpi”, or “mpi standard”, or “mpi tutorial”…
• http://www.mpi-forum.org (location of the MPI standard)
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
• http://www-unix.mcs.anl.gov/mpi/tutorial/

• MPI on Linux clusters:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Open MPI (http://www.open-mpi.org/)

• Books:
– Using MPI “Portable Parallel Programming with the Message-Passing Interface” by William Gropp, Ewing

Lusk, and Anthony Skjellum
– Using MPI-2 “Advanced Features of the Message-Passing Interface”

http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

OpenMP References
• See:

– http://www.openmp.org/resources/openmp-presentations/
– http://www.openmp.org/resources/tutorials-articles/

• Excellent tutorial from SC’08 conference posted at:
– http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
– See references within document

• More tutorials:
– http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html
– https://computing.llnl.gov/tutorials/openMP/

http://www.openmp.org/resources/openmp-presentations/
http://www.openmp.org/resources/tutorials-articles/
http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html
https://computing.llnl.gov/tutorials/openMP/

GPU References
• http://www.gputechconf.com/gtcnew/on-demand-gtc.php
• http://www.nvidia.com
• http://gpgpu.org

– In particular: http://gpgpu.org/ppam2011
• http://www.olcf.ornl.gov/event/cray-technical-workshop-on-xk6-programming/
• http://www.pgroup.com/resources/index.htm
• http://www.caps-entreprise.com/products/openacc-compiler/

http://gpgpu.org
http://gpgpu.org
http://gpgpu.org
http://gpgpu.org/ppam2011
http://www.olcf.ornl.gov/event/cray-technical-workshop-on-xk6-programming/
http://www.pgroup.com/resources/index.htm
http://www.caps-entreprise.com/products/openacc-compiler/

