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• Magneto-Hydro-Dynamics “MHD” (or the fluid model) provides a 
relatively simple way to compute the equilibrium and stability of 
a fusion plasma

MHD cannot tell you: 
• How much fusion will I get in my plasma for a given input power?

MHD can tell you: 
• What is the maximum pressure (fusion) my plasma can sustain? 
• Where should I place my magnets to control the plasma?
• What are those wiggles and crashes in my plasma?

Pre-amble: Why is MHD important?



5
C Paz-Soldan/SULI 1WC/06-2019

Example 1: MHD Describes Conducting Fluids
… Liquid Metal

Key Variables:
Magnetic Field, Flow, Current

Liquid Metals Flowing is a photograph by Gregory Lafferty
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Example 2: Most Tokamak Operational Limits are 
Governed by MHDAdditionally: ideal MHD beta limit
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Example 2: Most Tokamak Operational Limits are 
Governed by MHDAdditionally: ideal MHD beta limit
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Guiding Principle: Zoom Out ! Single Particles Become 
Well Described by Aggregate Properties

• Aggregate Quantities
– Number of particles
– Mean velocity
– Kinetic Energy

The spatial scale considered is 
rather big: “macro-scale”

Functionally this means no smaller than
~~ few % of device radius

METHOD II: FOR WEAKLY COUPLED PLASMAS,
COARSE-GRAIN AVERAGE IN PHASE SPACE

I Weakly coupled plasma: large # of particles in any volume of
size �3

D
I A large fraction of scientifically interesting plasmas are weakly

coupled
I For weakly coupled plasmas, replace the discrete particles with

smooth distribution function f (x, v, t) defined so that

f (x, v, t)dxdv = # of particles in 6D phase-space volume dxdv

METHOD II: FOR WEAKLY COUPLED PLASMAS,
COARSE-GRAIN AVERAGE IN PHASE SPACE

I Weakly coupled plasma: large # of particles in any volume of
size �3

D
I A large fraction of scientifically interesting plasmas are weakly

coupled
I For weakly coupled plasmas, replace the discrete particles with

smooth distribution function f (x, v, t) defined so that

f (x, v, t)dxdv = # of particles in 6D phase-space volume dxdv

Too few particles

Good # particles
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Excellent Textbooks on MHD are Available

ISBN-10: 1107006252 ISBN-10: 0521626072 ISBN-10: 052170524X

We have only ~ one hour for a graduate-level topic
…my treatment will try to be conceptual
J … ! you should read the books ! … J
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• Born: Toronto, Ontario, Canada
• B.Sc.E: Kingston, Ontario (2007)
• Ph.D: Madison, Wisconsin (2012)
• @ DIII-D/General Atomics since 2012

My Roles (@ DIII-D):
• Tokamak physics operator

– (pressing buttons / turning knobs)
• Research on MHD instabilities

– “ELMs”, “Error Fields”, “Runaways”

• NOT a theorist: I dont derive equations
• AM an ”Experimentalist”

– Design scans, collect & analyze data 
• NOT a professor / lecturer !

About Me

DIII-D Control Room c. 2019
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• Natural idea: Move each 
particle according to F = ma

• Difficulty 1: Many particles, 
– N∼1020−1022 in magnetic fusion 

grade plasmas 

• Difficulty 2: Force depends on 
position of all other particles

Impossible to directly compute
(and wasteful to try)

MHD Starting point: 
Equations for Single-Particle Motion Are Simple, Right?

!35

y

x

+

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Force F on single particle:

E set up by all other particles
B set up by all other particles
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• Replace discrete particles 
with smooth distribution 
function

defined such that: 

• ∫ f (x, v, t) dx dv = # of 
particles in 6D phase-space 
volume dx dv

• 7 dimensions:
– 3 spatial (x, y, z)
– 3 velocity (vx, vy, vz)
– 1 temporal (t)

Basic Idea of a Fluid Model: Look at what happens in 
a box that encompasses large # of particles

Chapter 4 

Fluid Description of Plasma 

The single particle approach gets to be horribly complicated, as we have seen. 
Basically we need a more statistical approach because we can’t follow each particle separately. 
If the details of the distribution function in velocity space are important we have to stay 
with the Boltzmann equation. It is a kind of particle conservation equation. 

4.1 Particle Conservation (In 3-d Space) 

Figure 4.1: Elementary volume for particle conservation 

Number of particles in box �x�y�z is the volume, �V = �x�y�z, times the density n. 
Rate of change of number is is equal to the number flowing across the boundary per unit 
time, the flux. (In absence of sources.) 

@ 
[�x�y�z n] = Flow Out across boundary. (4.1) � 

@t

Take particle velocity to be v(r) [no random velocity, only flow] and origin at the center of 
the box refer to flux density as nv = J. 

Flow Out = [Jz (0, 0, �z/2) � Jz (0, 0, ��z/2)] �x�y + x + y . (4.2) 

64 

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation
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Guiding Principle: If enough particles in the box
it will have well defined aggregate properties

• Expected quantities to be regular 
in the box (derive some later)
– Number of particles
– Mean velocity
– Kinetic Energy

• This sets a key aspect of MHD:

The spatial scale considered is 
rather big: “macro-scale”

Functionally this means no smaller than
~~ few % of device radius

METHOD II: FOR WEAKLY COUPLED PLASMAS,
COARSE-GRAIN AVERAGE IN PHASE SPACE

I Weakly coupled plasma: large # of particles in any volume of
size �3

D
I A large fraction of scientifically interesting plasmas are weakly

coupled
I For weakly coupled plasmas, replace the discrete particles with

smooth distribution function f (x, v, t) defined so that

f (x, v, t)dxdv = # of particles in 6D phase-space volume dxdv

METHOD II: FOR WEAKLY COUPLED PLASMAS,
COARSE-GRAIN AVERAGE IN PHASE SPACE

I Weakly coupled plasma: large # of particles in any volume of
size �3

D
I A large fraction of scientifically interesting plasmas are weakly

coupled
I For weakly coupled plasmas, replace the discrete particles with

smooth distribution function f (x, v, t) defined so that

f (x, v, t)dxdv = # of particles in 6D phase-space volume dxdv

Too few particles

Good # particles
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DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

Fluid Moments are how we mathematically formalize 
aggregate quantities of the distribution function

Z Z 

R 

R 

R 

Expand as Taylor series 
@ 

Jz (0, 0, ⌘) = Jz (0) + Jz . ⌘ (4.3) 
@z 

So, 

@ 
flow out (nvz )�z�x�y + x + y (4.4) ' 

@z 
= �V r . (nv). 

Hence Particle Conservation 
@ 

n = r.(nv) (4.5) � 
@t 

Notice we have essential proved an elementary form of Gauss’s theorem 

r.Ad
3 
r = A.dS. (4.6) 

v @� 

The expression: ‘Fluid Description’ refers to any simplified plasma treatment which does 
not keep track of v-dependence of f detail. 

1. Fluid Descriptions are essentially 3-d (r). 

2. Deal with quantities averaged over velocity space (e.g. density, mean velocity, ...). 

3. Omit some important physical processes (but describe others). 

4. Provide tractable approaches to many problems. 

5. Will occupy most of the rest of my lectures. 

Fluid Equations can be derived mathematically by taking moments1 of the Boltzmann Equa-
tion. 

0th moment d
3 
v (4.7) 

1st moment vd
3 
v (4.8) 

2nd moment vvd
3 
v (4.9) 

These lead, respectively, to (0) Particle (1) Momentum (2) Energy conservation equations. 
We shall adopt a more direct ‘physical’ approach. 

1They are therefore sometimes called ‘Moment Equations.’ 

65 

Let’s look at an example
(Maxwellian Distribution)
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Fluid Moments and their Relation to the Distribution

(Maxwellian Distribution)

D
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tri
b

ut
io

n

Speed (m/s)

f (v, t) =
q

2
⇡
v2e�v2/(2a2)

a3

n(t) =
R

f (v, t)dv ⌘ 1

V (t) = 1
n

R
vf (v, t)dv ⌘ 2a

q
2
⇡

P (t) = 1
m

R
(v � V )(v � V )f (v, t)dv ⌘ a2

⇡ (3⇡ � 8)

1

“Maxwellian” distribution
describes the speed (1-D)

“Gaussian/Normal” distribution 
describes the velocity (3-D)
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Fluid Moments and their Relation to the Distribution
Fluid Density: Number of Particles (area under curve)

(Maxwellian Distribution)

D
is

tri
b

ut
io

n

f (v, t) =
q

2
⇡
v2e�v2/(2a2)

a3

n(t) =
R

f (v, t)dv ⌘ 1

V (t) = 1
n

R
vf (v, t)dv ⌘ 2a

q
2
⇡

P (t) = 1
m

R
(v � V )(v � V )f (v, t)dv ⌘ a2

⇡ (3⇡ � 8)

1

f (v, t) =
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Fluid Moments and their Relation to the Distribution
Fluid Velocity: Mean Value of Distribution

(Maxwellian Distribution)
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Fluid Moments and their Relation to the Distribution
Fluid Pressure: Variance of Distribution

(Maxwellian Distribution)

f (v, t) =
q

2
⇡
v2e�v2/(2a2)
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Power of Fluid Moments: 
Convert Complicated Distributions to Single Numbers!

Fluid Velocity

~ Fluid 
Pressure

D
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⇡
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1
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q

2
⇡
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R

f (v, t)dv ⌘ 1

V (t) = 1
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R
vf (v, t)dv ⌘ 2a

q
2
⇡
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R
(v � V )(v � V )f (v, t)dv ⌘ a2

⇡ (3⇡ � 8)
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q

2
⇡

P (t) = a2

⇡ (3⇡ � 8)

1
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How can we write F = m a for the distribution function?

• We already know some of these terms!

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

• Enforce that particles can not be created or destroyed

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

• Apply it to the 7-D f (x, v, t) (Wikipedia “convective derivative”) 

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

• Plug into the convective derivative: Vlasov Equation

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation
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Taking Moments of the Boltzmann Equation Gives Rise 
to the Fluid Equations

• Boltzmann Equation includes collisions

THE BOLTZMANN EQUATION

I In fusion plasmas, we separate, leading to the Boltzmann
equation:

@f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf =

✓
@f
@t

◆

c

This equation to be combined with Maxwell’s equations:

r⇥ E = �@B
@t

r⇥ B = µ0J +
1
c2

@E
@t

I Nonlinear, integro-differential, 6-dimensional PDE –
Challenging

I Describes phenomena on widely varying length (10�5 – 103 m)
and time (10�12 – 102 s) scales

I Still not a piece of cake, and never solved as such for fusion
plasmas

• Vlasov Equation does not include collisions

DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =
ZZZ

f (x, v, t)dv Density

nV(x, t) =
ZZZ

vf (x, v, t)dv Mean flow

P(x, t) = m
ZZZ

(v � V) (v � V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :

df
dt

=
@f
@t

+
dx
dt

·rf +
dv
dt

·rvf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v ⇥ B)

) @f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf = 0

This is the Vlasov equation

• MHD Equations are fluid moments of the Boltzmann equation

� = 2µ0<p>
B2

IN = IP
aB�

�N = �
IN

= �✓
IP
aB�

◆

R h
df
dt �

⇣
@f
@t

⌘

C

i
dvR

mv
h
df
dt �

⇣
@f
@t

⌘

C

i
dvR

mv2

2

h
df
dt �

⇣
@f
@t

⌘

C

i
dv

2

Continuity Equation

Momentum Equation

Energy Equation



23
C Paz-Soldan/SULI 1WC/06-2019

Example: Derivation of the Continuity Equation
(For a Single Species)

• We have to take a fluid moment of the Boltzmann equation:

q⇤ =
a
R

B�
B✓

= 2⇡
µ0

B�
IP

a2

R

⇣
1+2

2

⌘

� = 2µ0<p>
B2

IN = IP
aB�

�N = �
IN

= �✓
IP
aB�

◆

R h
df
dt �

⇣
@f
@t

⌘

C

i
dvR

mv
h
df
dt �

⇣
@f
@t

⌘

C

i
dvR

mv2

2

h
df
dt �

⇣
@f
@t

⌘

C

i
dv

@f
@t + v ·rf + q

m(E + v ⇥ B) ·rvfR h
@f
@t + v ·rf + q

m(E + v ⇥ B) ·rvf
i
dv

2

2 31
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Example: Derivation of the Continuity Equation
(For a Single Species)

• We have to take a fluid moment of the Boltzmann equation:

q⇤ =
a
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⇣
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⌘
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Example: Derivation of the Continuity Equation
(For a Single Species)
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Example: Derivation of the Continuity Equation
(For a Single Species)
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Example: Derivation of the Continuity Equation
(For a Single Species)
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MOMENT APPROACH

@f
@t

+ v ·rf +
q
m

(E + v ⇥ B) ·rvf =

✓
@f
@t

◆

c

I Taking the integrals
RRR

dv,
RRR

mvdv and
RRR

mv2/2dv of this
equation, we obtain the exact fluid equations:

@ns

@t
+r · (nsVs) = 0 Continuity

mn
✓
@Vs

@t
+ Vs ·rVs

◆
= qsns (E + Vs ⇥ B)�r · Ps + Rs Momentum

d
dt

✓
3
2

ps

◆
+

5
2

psr · Vs + ⇡s : rVs +r · qs = 0 (Energy)

with Ps = psI + ⇡s.
I Closure problem: for each moment, we introduce a new

unknown ) End up with too many unknowns
I Need to make approximations to close the moment hierarchy

This Process Continues to Derive the Higher Order 
Moments

• Notice a hierarchy is present: 
– Quantity needed to solve (N)th equation is given by (N+1)th equation

• This continues forever, and is called the “Closure Problem”
– Approximations are essential to the fluid model

Momentum
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The Final Step to Derive MHD Equations is to
Combine Electron and Ion Species

• Single-Species Momentum Equation:
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3
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The Final Step to Derive MHD Equations is to
Combine Electron and Ion Species
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The Final Step to Derive MHD Equations is to
Combine Electron and Ion Species

• Combined Momentum Equation:

Quasi-neutrality (both)

Mass Density (ion)

Mass Flow (ion)

Current (both)
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Pressure (both)
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The Final Step to Derive MHD Equations is to
Combine Electron and Ion Species
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Quasi-neutrality (both)

Mass Density (ion)

Mass Flow (ion)

Current (both)

• Single-Species Momentum Equation:

R ⇥ q
m(E + v ⇥ B) ·rvf

⇤
dv =

R
[rv · [. . .]]dv = 0

@
@tn(x, t) +r · n(x, t)v = 0

@
@tne(x, t) + ni(x, t) +r · ne(x, t) + ni(x, t)v = 0

ne = ni = n

⇢ = n(mi +me) ⇡ nmi

J = en(vi � ve)

v ⇡ vi

mn
�
@Vs
@t +Vs ·rVs

�
= qsns (E +Vs ⇥B)�r ·Ps +Rs

mene

�
@Ve
@t +Ve ·rVs

�
+mini

⇣
@Vi
@t +Vi ·rVi

⌘
=

e(ne � ni)E+ e(neVe � niVi)⇥B�r · (Pe +Pi) +Re +Ri

mene

�
@Ve
@t +Ve ·rVe

�
= qene (E +Ve ⇥B)�r ·Pe+Re

3

R ⇥ q
m(E + v ⇥ B) ·rvf

⇤
dv =

R
[rv · [. . .]]dv = 0

@
@tn(x, t) +r · n(x, t)v = 0

@
@tne(x, t) + ni(x, t) +r · ne(x, t) + ni(x, t)v = 0

ne = ni = n

⇢ = n(mi +me) ⇡ nmi

J = en(vi � ve)

v ⇡ vi

mn
�
@Vs
@t +Vs ·rVs

�
= qsns (E +Vs ⇥B)�r ·Ps +Rs

mene

�
@Ve
@t +Ve ·rVs

�
+mini

⇣
@Vi
@t +Vi ·rVi

⌘
=

e(ne � ni)E+ e(neVe � niVi)⇥B�r · (Pe +Pi) +Re +Ri

mene

�
@Ve
@t +Ve ·rVe

�
= qene (E +Ve ⇥B)�r ·Pe+Re

3

Pressure (both)



34
C Paz-Soldan/SULI 1WC/06-2019

R ⇥ q
m(E + v ⇥ B) ·rvf

⇤
dv =

R
[rv · [. . .]]dv = 0

@
@tn(x, t) +r · n(x, t)v = 0

@
@tne(x, t) + ni(x, t) +r · ne(x, t) + ni(x, t)v = 0

ne = ni = n
⇢ = n(mi +me) ⇡ nmi

J = en(Vi �Ve)
V ⇡ Vi

p = Pi +Pe

mn
�
@Vs
@t +Vs ·rVs

�
= qsns (E +Vs ⇥B)�r ·Ps +Rs

mene

�
@Ve
@t +Ve ·rVs

�
+mini

⇣
@Vi
@t +Vi ·rVi

⌘
=

e(ne � ni)E+ e(neVe � niVi)⇥B�r · (Pe +Pi) +Re +Ri

mene

�
@Ve
@t +Ve ·rVe

�
= qene (E +Ve ⇥B)�r ·Pe+Re

3

The Final Step to Derive MHD Equations is to
Combine Electron and Ion Species
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Final Ideal MHD Equations: (Including Maxwell’s Laws)IDEAL MHD - SUMMARY
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Final Ideal MHD Equations: (Including Maxwell’s Laws)IDEAL MHD - SUMMARY

@⇢

@t
+r · (⇢V) = 0

⇢
dV
dt

= J ⇥ B �rp

d
dt

✓
p

⇢5/3

◆
= 0

E + V ⇥ B = 0

r⇥ E = �@B
@t

r⇥ B = µ0J
r · B = 0

Valid under the conditions
✓

mi
me

◆1/2 ⇣vi⌧ii
a

⌘
⌧ 1

rLi
a

⌧ 1
⇣rLi

a

⌘2
✓

me

mi

◆1/2 a
vTi⌧ii

⌧ 1

Continuity

Energy

Maxwell’s LawsKey Variables:
B-field, E-field, Pressure (p), Flow (V), Current (J)

Momentum
(~ ion)

Current
(~ electron)



37
C Paz-Soldan/SULI 1WC/06-2019

Some Words on the Philosophy of the MHD Approach

• The purpose of ideal MHD is to study the macroscopic behavior 
of the plasma

• MHD can be used to design machines that avoid large scale 
instabilities (we’ll discuss some later)

• Regime of interest
– Typical length scale: the radius of the device (~ 1 meter)
– Typical velocities: Ion thermal velocity (~ 500 km/s)
– Typical time scale: Radius / velocity ~ 2 microseconds (< ~100s kHz)
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VALIDITY OF THE IDEAL MHD MODEL (II)

I Express three conditions in terms of usual physical parameters:
n, T, a

I For tokamak-like pressures and a = 1m, we find:

The regime of validity of ideal
MHD does NOT coincide with the
fusion plasma regime (Figure
from Ideal MHD by J.P. Freidberg,
CUP, 2014)

The collisionality of fusion
plasmas is too low for the ideal
MHD model to be valid.

Is that a problem?

MHD is the Perfect Model for a Liquid Metal
… but Not Actually for a Fusion Plasma

• Fluid models work best when density 
is high and collisions are frequent
– Allows equilibrated (Maxwellian) 

distributions
– Allows moments to capture 

distribution well
– Solves “Closure” problem

• The regime of validity of ideal MHD 
does NOT coincide with the fusion 
plasma regime 
– The collisionality of fusion plasmas is 

too low for the ideal MHD model to 
be valid !

MHD%is%an%excellent%model%for%liquid%metal/
magneGc%field%interacGon.%

Mercury%at%room%temperature%
[Wikipedia].#

Liquid%sodium%dynamo%experiment%at%Wisconsin%
[plasma.physics.wisc.edu/viewpage.php?id=mde].%

Ideal MHD by J.P. Freidberg 

Why do we still use it? 
Because it works !
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VALIDITY OF THE IDEAL MHD MODEL (II)

I Express three conditions in terms of usual physical parameters:
n, T, a

I For tokamak-like pressures and a = 1m, we find:

The regime of validity of ideal
MHD does NOT coincide with the
fusion plasma regime (Figure
from Ideal MHD by J.P. Freidberg,
CUP, 2014)

The collisionality of fusion
plasmas is too low for the ideal
MHD model to be valid.

Is that a problem?

MHD is the Perfect Model for a Liquid Metal
… but Not Actually for a Fusion Plasma

MHD%is%an%excellent%model%for%liquid%metal/
magneGc%field%interacGon.%

Mercury%at%room%temperature%
[Wikipedia].#

Liquid%sodium%dynamo%experiment%at%Wisconsin%
[plasma.physics.wisc.edu/viewpage.php?id=mde].%

Ideal MHD by J.P. Freidberg 

• Success of MHD is not due to luck 
but to subtle physical reasons

• This is because ideal MHD is 
accurate for dynamics 
perpendicular to the fields lines

• Can show that collisionless kinetic 
models for macroscopic instabilities 
are more optimistic than ideal MHD

• Designs based on ideal MHD 
calculations are conservative
designs
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Review of Concepts – MHD Equations

• The fluid approach is all about describing a distribution of 
particles in terms of their aggregate properties
– Density, Flow, Energy

• “Fluid Moments” are taken of the underlying Boltzmann 
equation to derive the “Fluid Equations” for ions and electrons

• Electron and ion equations are combined and simplified to 
give the ”MHD Equations”

• The main goal of the MHD approach is to describe the 
macroscopic phenomena / instabilities of the plasma

• MHD is not technically valid for fusion plasmas but it works !
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• Pre-amble: Why the MHD model?

• Development of the MHD Equations

• MHD Equilibrium: 1-D, 2-D, 3-D Configurations

• MHD and its Relation to Global Operational Limits

• Brief Tour of Common MHD Instabilities and Their Control

Outline of Presentation
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Static MHD Equilibrium Equations are a 
Dramatic Reduction of the Ideal MHD Equations

EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: @/@t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

r · B = 0
r⇥ B = µ0J
J ⇥ B = rp

A more condensed form is

r · B = 0 (r⇥ B)⇥ B = µ0rp

Note that the density profile does not appear
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only 3 quantities to solve
Pressure (P), Current (J), Mag Field (B)

No separation of density vs temperature
No electric fields allowed
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Two Very Simple MHD Equilibrium Configurations
Can be Easily Obtained in Cylindrical Geometry

• Radial Pressure gradient =
hot core separated from a cold wall

EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: @/@t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

r · B = 0
r⇥ B = µ0J
J ⇥ B = rp

A more condensed form is

r · B = 0 (r⇥ B)⇥ B = µ0rp

Note that the density profile does not appear
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Sandia National Lab Operates a Very Large Z-Pinch



46
C Paz-Soldan/SULI 1WC/06-2019

Sandia National Lab Operates a Very Large Z-Pinch
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Screw Pinch Combines Z and Theta Pinch

• Pressure gradient supported 
by axial field (BZ) and axial 
currents (JZ)

• Bq comes from JZ

– (Ampere’s Law)

• Jq comes from diamagnetic 
drift
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EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: @/@t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

r · B = 0
r⇥ B = µ0J
J ⇥ B = rp

A more condensed form is

r · B = 0 (r⇥ B)⇥ B = µ0rp

Note that the density profile does not appear
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I conducted my PhD Research on a Screw Pinch

Stabilization of the Resistive Wall Mode by a Rotating Solid Conductor

C. Paz-Soldan, M. I. Brookhart, A. T. Eckhart, D. A. Hannum, C. C. Hegna, J. S. Sarff, and C. B. Forest*

Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
(Received 11 August 2011; published 5 December 2011)

Stabilization of the resistive wall mode (RWM) by high-speed differentially rotating conducting walls is

demonstrated in the laboratory. To observe stabilization intrinsic azimuthal plasma rotation must be

braked with error fields. Above a critical error field the RWM frequency discontinuously slows (locks) and

fast growth subsequently occurs. Wall rotation is found to reduce the locked RWM saturated amplitude

and growth rate, with both static (vacuum vessel) wall locked and slowly rotating RWMs observed

depending on the alignment of wall to plasma rotation. At high wall rotation RWM onset is found to occur

at larger plasma currents, thus increasing the RWM-stable operation window.

DOI: 10.1103/PhysRevLett.107.245001 PACS numbers: 52.30.Cv, 52.55.Tn

The resistive wall mode (RWM) is a performance-
limiting magnetohydrodynamic (MHD) instability com-
mon to many magnetic confinement configurations [1].
It occurs when stabilizing eddy currents in a conducting
wall Ohmically dissipate, allowing the RWM to grow
on the time scale of the wall’s resistive diffusion (!w !
" 0#wrw$w, where #w, rw, and $w are the wall conductiv-
ity, radius, and thickness, respectively). It is known that
plasma rotation is able to stabilize the RWM [2] as stabi-
lizing eddy currents are inductively regenerated by the
moving plasma. Analogously, theory suggests [3– 6] that
a system of differentially rotating conducting walls can
stabilize the RWM, as the RWM will always be rotating in
the frame of one of the two walls. RWM stabilization has
been previously achieved both by active drive of plasma
rotation [7] and the use of active feedback coils [8– 10],
though next-step devices will be limited in their ability to
drive plasma rotation [11]. Stabilization by physically
moving conductors is of further interest due to its analogy
to an infinite set of active coils [12], the predicted robust-
ness of stabilization [6], and the application to future
devices utilizing flowing liquid metals for cooling, tritium
breeding, or the first wall [13].

In this Letter it is shown for the first time that a physi-
cally rotating conducting wall can successfully stabilize
the RWM. Intrinsic plasma rotation yields a kHz-scale
rotating RWM which must be braked to observe the inter-
action of the instability with the rotating wall. For suffi-
ciently braked (locked) modes, wall rotation is found to
reduce the RWM growth rate, saturated amplitude, and to
extend the RWM-stable operation window.

Experiments are performed on the rotating wall machine
[14], a 1.2 m long by 16 cm diameter screw pinch shown in
Fig. 1. A uniform 500 G axial guide field (Bz) is applied by
four external solenoids and azimuthal field is provided by
up to 7 kA of plasma current (Ip). Plasmas are generated
by an array of 7 washer-stabilized hollow cathode plasma
guns [15] which, when electrostatically biased with respect
to an external anode, source both plasma and current. The

bias on each gun is feedback controlled, allowing current
profiles to be tailored in both space and time. The rotating
wall itself is a precision-engineered 1 m long by 18 cm
diameter stainless steel tube with a 1 mm interior copper
liner yielding !w ¼ 7 ms. The static wall (vacuum vessel)
is also stainless steel with a 0.5 mm exterior copper liner
yielding !w ¼ 4 ms. The relevant nondimensional parame-
ter describing rotation is the magnetic Reynolds number
(Rm ! !w!w, where !w is the wall angular velocity)
which sets the ratio of advection to diffusion of the mag-
netic field. Experiments here described are conducted up to
Rm ¼ 5, which corresponds to rotation at 260 km=h
(6800 rpm). Unless otherwise noted, discharges presented

FIG. 1 (color online). The rotating wall machine [14] experi-
mental geometry. Plasmas are illustrated as discrete flux ropes
though measurements indicate that a fully merged axisymmetric
profile is achieved by 1=3 of the distance to the anode.
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FIG. 13. (Color online) Plasma density profiles from single-tip Langmuir
probe for different injected gun currents. Increased gun injection current
(ohmic heating) strongly increases the plasma density, while Te remains rel-
atively constant (not shown).

of these two values, yielding a volume averaged value of β

approaching 10%.

B. Current profiles

The magnetic probe described in Sec. III C is used to
measure the equilibrium currents and magnetic fields in the
RWM plasma. Using the differential form of Ampere’s law
(∇ × B⃗ = µ0 J⃗ ), the radial profile of Bθ can be related to the
axial current profile, assuming azimuthal axisymmetry. The
current density profile shown in Fig. 14 is created with the
central seven guns each producing an equal amount of current,
yet the profile is strongly peaked as opposed to the top-hat
shape assumed in theory.12 As a check of the probe measure-
ment, the coarse current profile measured by the segmented
anode is also shown in Fig. 14, illustrating good agreement
between the two methods.
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FIG. 14. (Color online) Axial current profile from internal magnetic probes
utilizing ensemble averaging, illustrating a single collimated current channel.
The discrete current filaments from the plasma source array have merged
by this point in the discharge (Z = 89 cm). The current measured by the
segmented anode is also plotted and shows good agreement.
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FIG. 15. (Color online) Relative radial profiles of both ne (above) and Jz
(below) both near to (10 cm) and farther from (36 cm) the plasma gun array.
The discrete flux ropes exiting the gun are seen to merge (in both current and
density) within 36 cm from the gun.

1. Discrete source merging

The plasma source array injects current-carrying plasma
into the experimental volume at discrete locations which then
merge. Internal probe measurements are able to measure the
merger of the discrete flux ropes, with both kinetic (ne) and
current profiles shown in Fig. 15. Profiles near the gun (Z =
10 cm) illustrate the discretized structures corresponding to
the central gun and the inner ring of guns. However, by Z =
36 cm, these structures are no longer present in both the den-
sity and the current profiles, indicating a merger of the flux
ropes. The merger in the azimuthal direction is likely accom-
plished by phase mixing brought on by magnetic shear. Field
lines on the center of a single flux rope map to different az-
imuthal locations than field lines on the edge of the flux rope,
thus blending the flux rope into its azimuthal neighbor as it
leaves the gun nozzle. The fact that the flux ropes have fully
merged within Z = 36 cm confirms that parameter profiles are
adequately captured by a 1D model.

2. Current profile control

The current injected from each gun in the array can be
controlled independently, giving a large degree of control over
the current profile in the RWM. As an illustration of spatial
control, Fig. 16 illustrates two different current profiles. The
first is from a discharge created with the central seven guns
of the 19 gun array injecting current. This profile displays a
peaked current density and a safety factor minimum on-axis.
The other profile shown in Fig. 16 pertains to a discharge in
which the central gun was not discharged, leading to a hollow
current profile and a correspondingly reverse-shear safety fac-
tor (∂q/∂r < 0) profile with a minimum off-axis. The peaked
current profiles are well suited to excited internal kink modes,
while the hollow profiles are better suited to external kink
mode study.

Downloaded 11 Aug 2011 to 128.104.166.166. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

C. Paz-Soldan et al, Rev Sci Instrum. 2011

f (v, t) =
q

2
⇡
v2e�v2/(2a2)

a3

n(t) =
R

f (v, t)dv ⌘ 1

V (t) = 1
n

R
vf (v, t)dv ⌘ 2a

q
2
⇡

P (t) = 1
m

R
(v � V )(v � V )f (v, t)dv ⌘ a2

⇡ (3⇡ � 8)

n(t) = 1

V (t) = 2a
q

2
⇡

P (t) = a2

⇡ (3⇡ � 8)

J✓Bz = �dp
dr

JzB✓ = �dp
dr

JzB✓ + J✓Bz = �dp
dr

1

Pressure gradients!
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I conducted my PhD Research on a Screw Pinch

Stabilization of the Resistive Wall Mode by a Rotating Solid Conductor

C. Paz-Soldan, M. I. Brookhart, A. T. Eckhart, D. A. Hannum, C. C. Hegna, J. S. Sarff, and C. B. Forest*

Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
(Received 11 August 2011; published 5 December 2011)

Stabilization of the resistive wall mode (RWM) by high-speed differentially rotating conducting walls is

demonstrated in the laboratory. To observe stabilization intrinsic azimuthal plasma rotation must be

braked with error fields. Above a critical error field the RWM frequency discontinuously slows (locks) and

fast growth subsequently occurs. Wall rotation is found to reduce the locked RWM saturated amplitude

and growth rate, with both static (vacuum vessel) wall locked and slowly rotating RWMs observed

depending on the alignment of wall to plasma rotation. At high wall rotation RWM onset is found to occur

at larger plasma currents, thus increasing the RWM-stable operation window.

DOI: 10.1103/PhysRevLett.107.245001 PACS numbers: 52.30.Cv, 52.55.Tn

The resistive wall mode (RWM) is a performance-
limiting magnetohydrodynamic (MHD) instability com-
mon to many magnetic confinement configurations [1].
It occurs when stabilizing eddy currents in a conducting
wall Ohmically dissipate, allowing the RWM to grow
on the time scale of the wall’s resistive diffusion (!w !
" 0#wrw$w, where #w, rw, and $w are the wall conductiv-
ity, radius, and thickness, respectively). It is known that
plasma rotation is able to stabilize the RWM [2] as stabi-
lizing eddy currents are inductively regenerated by the
moving plasma. Analogously, theory suggests [3– 6] that
a system of differentially rotating conducting walls can
stabilize the RWM, as the RWM will always be rotating in
the frame of one of the two walls. RWM stabilization has
been previously achieved both by active drive of plasma
rotation [7] and the use of active feedback coils [8– 10],
though next-step devices will be limited in their ability to
drive plasma rotation [11]. Stabilization by physically
moving conductors is of further interest due to its analogy
to an infinite set of active coils [12], the predicted robust-
ness of stabilization [6], and the application to future
devices utilizing flowing liquid metals for cooling, tritium
breeding, or the first wall [13].

In this Letter it is shown for the first time that a physi-
cally rotating conducting wall can successfully stabilize
the RWM. Intrinsic plasma rotation yields a kHz-scale
rotating RWM which must be braked to observe the inter-
action of the instability with the rotating wall. For suffi-
ciently braked (locked) modes, wall rotation is found to
reduce the RWM growth rate, saturated amplitude, and to
extend the RWM-stable operation window.

Experiments are performed on the rotating wall machine
[14], a 1.2 m long by 16 cm diameter screw pinch shown in
Fig. 1. A uniform 500 G axial guide field (Bz) is applied by
four external solenoids and azimuthal field is provided by
up to 7 kA of plasma current (Ip). Plasmas are generated
by an array of 7 washer-stabilized hollow cathode plasma
guns [15] which, when electrostatically biased with respect
to an external anode, source both plasma and current. The

bias on each gun is feedback controlled, allowing current
profiles to be tailored in both space and time. The rotating
wall itself is a precision-engineered 1 m long by 18 cm
diameter stainless steel tube with a 1 mm interior copper
liner yielding !w ¼ 7 ms. The static wall (vacuum vessel)
is also stainless steel with a 0.5 mm exterior copper liner
yielding !w ¼ 4 ms. The relevant nondimensional parame-
ter describing rotation is the magnetic Reynolds number
(Rm ! !w!w, where !w is the wall angular velocity)
which sets the ratio of advection to diffusion of the mag-
netic field. Experiments here described are conducted up to
Rm ¼ 5, which corresponds to rotation at 260 km=h
(6800 rpm). Unless otherwise noted, discharges presented

FIG. 1 (color online). The rotating wall machine [14] experi-
mental geometry. Plasmas are illustrated as discrete flux ropes
though measurements indicate that a fully merged axisymmetric
profile is achieved by 1=3 of the distance to the anode.

PRL 107, 245001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

0031-9007=11=107(24)=245001(5) 245001-1 ! 2011 American Physical Society

JZ

BZ Plasma gun array
A rotating conducting wall, according to theory, should stabilize a linear plasma column against
certain magnetohydrodynamic instabilities. Shown here is a view down the inside of such a wall, 

in the rotating wall machine at the University of Wisconsin–Madison. Along its 1-meter length, the 16-cm-diameter, glass- and
copper-lined stainless-steel tube reflects the sixfold symmetry of the triangular array of seven plasma “guns” centered at the far
end. To study the wall’s stabilizing effect, the Wisconsin researchers, led by Cary Forest, ignite an arc plasma in each gun and then
propel the plasmas into the tube while it rotates at speeds approaching 7000 rpm. As predicted, the rotation did indeed increase
the stable range of the plasma current, though some discrepancies remain to be explored. (C. Paz-Soldan et al., Phys. Rev. Lett., 
in press; image submitted by Carlos Paz-Soldan.)

To submit candidate images for Back Scatter, visit http://www.physicstoday.org/backscatter.html.

100 December 2011    Physics Today www.physicstoday.org

back scatter

C. Paz-Soldan et al, Phys Today 2011

2 meters
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Interchange mode in toroidal geometry

• equilibrium pressure gradient: ∇β∼−er

• main contribution to magnetic curvature

comes from toroidal field: κκκ =−1
ReR

• interchange modes ∼ eimθ “feel” average

curvature: ⟨κκκ · er⟩θϕ = −r

(qR0)
2

(

1−q2
)

r

Bϕ

θB

R

Z

• estimation for k∥: ik∥φ̃ = ∇∥φ̃ ≈
i

R0

(

m

q
−n

)

φ̃ ,
1

q
≈

1

q(rs)
−

q′

q2

∣

∣

∣

∣

rs

(r− rs)

→ k∥φ̃ ≈−
m

rs
(r− rs)

s

R0q
φ̃ → k∥ ∼ −

s

R0q
with s =

r

q

dq

dr

17

• Bf is called the “Toroidal Field”
• Jf is called the “Plasma Current”
• Bq (from Jf) is called the “Poloidal Field”
• Geometry: Major radius, minor radius
• Geometry: Toroidal, Poloidal direction

A Tokamak is Basically a Screw Pinch Whose Ends 
Wrap Around and Connect … Forming a Torus

BZ → Bf

JZ → Jf

major radius

minor
radius
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Tokamaks Require Additional Coils (Beyond Toroidal 
Field) to Provide Toroidal MHD Equilibrium

Courtesy Wikipedia



52
C Paz-Soldan/SULI 1WC/06-2019

“Poloidal Field Coils” Are Needed to:
Counter the “Hoop Force” and Control Radial Position

•  Control plasma major radius: 
-  Assume plasma current (Ip) is positive 
-  Radial hoop force FR pushes plasma outward 
-  Vertical field (Bz) produced by outer coils 

holds it in desired location (regulation) ... 
-  ... or moves plasma in/out to match a time-

dependent request (tracking) 

Objectives of Control – Tracking and Regulation 

tokamak positive current sign 
convention (viewed from above)!

22.0!

• Plasma naturally wants to 
expand radially outward 
from hoop force

• Coils are needed to stop this

Courtesy M. Walker, GA
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“Poloidal Field Coils” Are Needed to:
Allow Plasma to ”Elongate” and Improve Performance

• Elongation increases the 
cross section of the plasma
– Area ~ pi*a*b

• More room for fusion at the 
same major radius

• Elongation is unstable and 
requires active control
– We’ll revisit this later

Courtesy M. Walker, GA

•  Control plasma elongation: 
-  Increasing elongation (κ) has been shown 

to improve performance, so we want to 
control: 

-  Control accomplished by "pulling" on top 
and bottom of plasma 

-  However, elongating plasma introduces 
destabilizing field curvature (explained in a 
moment) 

Objectives of Control – Tracking and Regulation 

€ 

κ =
b
a

23.0!



54
C Paz-Soldan/SULI 1WC/06-2019

Axisymmetric Toroidal Equilibria are Described by the 
“Grad Shafranov” Equation1,2

• Provides a solution for the Flux (Y) as 
a function of space (R, Z) and 
Pressure (p) and current (F)
– Flux as a function of space: Y(R,Z) is 

the basic coordinate
• Contours of equal flux are called 

“Flux Surfaces”
– Pressure is constant on a flux surface

• Outermost flux surface is called the 
“Separatrix”

• We label radius by “normalized flux”
– Core = 0, Separatrix = 1

GRAD-SHAFRANOV EQUATION

I Surfaces of constant pressure coincide with surfaces of constant
magnetic flux  

I These are given by the Grad-Shafranov equation

R
@

@R

✓
1
R
@ 

@R

◆
+

@2 

@Z2 = �µ0R2 dp
d 

� F
dF
d 

I Second-order, nonlinear, elliptic PDE. Derived independently by
H. Grad1 and V.D. Shafranov2.

I The free functions p and F determine the nature of the
equilibrium

I In general, the GSE has to be solved numerically
1Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic

Energy, Vol. 31, p.190
2Sov. Phys. JETP 6, 545 (1958)

Grad Shafranov:

YN=1YN=0

1. Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, Vol. 31, p.190 
2. Sov. Phys. JETP 6, 545 (1958) 

ITER Equilibrium
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3D Configurations: Also described by Ideal MHD and 
Also Defined by Flux Surfaces

• Require powerful computers 
to design 3D configurations

• Equations are the same; flux 
surfaces play the same role
– They just morph toroidally

• Advantage: no current 
necessary within the plasma
– Removes a free energy 

source for MHD instability

• Disadvantage: engineering 
complexity increases

GENERAL EQUILIBRIA

Equilibrium relation
J ⇥ B = rp

8
>>>>>><

>>>>>>:

(J ⇥ B = rp) · B ) B ·rp = 0
Magnetic field is tangent to surfaces of constant pressure

(J ⇥ B = rp) · J = 0 ) J ·rp = 0
Current density is tangent to surfaces of constant pressure

Courtesy W7X Web
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3D Configurations: Also described by Ideal MHD and 
Also Defined by Flux Surfaces

Courtesy W7X Web, Matthias Otte

Flux surfaces can be imaged by an electron beams lighting fluorescent rods
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Review of Concepts - Equilibrium

• The main equilibrium equation: 

• Simplest configurations: Theta and Z-pinch

• Combine Theta & Z to form Screw Pinch

• Wrap screw pinch into a torus = tokamak

• Poloidal field coils control and elongate tokamak

• 2-D Toroidal equilibria governed by Grad-Shafranov Equation

• 3-D Configurations (Stellarators) obey same MHD equations

EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: @/@t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

r · B = 0
r⇥ B = µ0J
J ⇥ B = rp

A more condensed form is

r · B = 0 (r⇥ B)⇥ B = µ0rp

Note that the density profile does not appear

f (v, t) =
q

2
⇡
v2e�v2/(2a2)

a3

n(t) =
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EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: @/@t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

r · B = 0
r⇥ B = µ0J
J ⇥ B = rp

A more condensed form is

r · B = 0 (r⇥ B)⇥ B = µ0rp

Note that the density profile does not appear
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• Pre-amble: Why the MHD model?

• Development of the MHD Equations

• MHD Equilibrium: 1-D, 2-D, 3-D Configurations

• MHD and its Relation to Global Operational Limits

• Brief Tour of Common MHD Instabilities and Their Control

Outline of Presentation
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MHD Stability Sets the Most Fundamental Limits to 
Achieving Controlled Magnetic FusionLAWSON CRITERION AND MHD

Condition for ignition: p⌧E � 8 bar.s Tmin ⇠ 15keV

I The maximum p is limited by the stability properties
Job of MHD

I The maximum ⌧E is determined by the confinement
properties
Job of kinetic models

• Pressure (p) comes directly from MHD limits
• Energy confinement time (tE) depends on quantities limited by MHD

tE =
Energy
Power
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Energy Confinement Time (tE) Increases with 
Quantities Limited by MHD Considerations

6

Scaling of tE and projection to ITER

3/2278.058.097.119.041.069.015.093.098(y,2)
thE, 0562.0 �� v PIRRMnPBI pket

98(y,2)
thE,t

)(98(y,2)
thE, st

)(exp
thE, st

ITER-FEAT3.7 sec

inverse aspect ratio elongation

Prediction for ITER

tE = 3.7 s

5.3 T; 15 MA; 
n = 1 1020 m-3 = 0.85 nGW
P = 87 MW

Plasma
current

B-field (weak)Current (strong)

Size (strongest!) Power (bad)

tE =
Energy
Power



61
C Paz-Soldan/SULI 1WC/06-2019

Energy Confinement Time (tE) Increases with 
Quantities Limited by MHD Considerations

6

Scaling of tE and projection to ITER

3/2278.058.097.119.041.069.015.093.098(y,2)
thE, 0562.0 �� v PIRRMnPBI pket

98(y,2)
thE,t

)(98(y,2)
thE, st

)(exp
thE, st

ITER-FEAT3.7 sec

inverse aspect ratio elongation

Prediction for ITER

tE = 3.7 s

5.3 T; 15 MA; 
n = 1 1020 m-3 = 0.85 nGW
P = 87 MW

Plasma
current

B-field (weak)Current (strong)

Size (strongest!) Power (bad)

tE =
Energy
Power
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Reminder: Most Tokamak Operational Limits are 
Governed by MHD à Let’s Start with the Current Limit

Additionally: ideal MHD beta limit

3

Density of Particles 
à Fusion Power Density

Pl
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Density Limit

Pressure 
Limit

Ve
ry 
Current Limit
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Maximum Plasma Current is Set by Kink Instabilities:
Essentially a Limit on the Magnetic Field “Twist”

• Mechanical analog is 
twisting an elastic band

• Eventually it develops a kink

Examples#of#MHD:%1)#External%kink%deforms%the%
plasma%surface%or%enGre%plasma%shape.%

Cylindrical%MHD%computaGon%
of%(1,1)%external%kink.#

IniGal%Shape# During%Kink#

Knot%formaGon%with%increasing%twist%of%
a%rubber%band.#

•  Kink%deformaGon%is%analogous%to%the%formaGon%of%knots%on%twisted%
rubber%bands.%

•  The%deformed%state%has%less%potenGal%energy%than%a%symmetric%state%
with%the%same%degree%of%twist%/%current%density.%
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Maximum Plasma Current is Set by Kink Instabilities:
Essentially a Limit on the Magnetic Field “Twist”

• Mechanical analog is 
twisting an elastic band

• Eventually it develops a kink

Examples#of#MHD:%1)#External%kink%deforms%the%
plasma%surface%or%enGre%plasma%shape.%

Cylindrical%MHD%computaGon%
of%(1,1)%external%kink.#

IniGal%Shape# During%Kink#

Knot%formaGon%with%increasing%twist%of%
a%rubber%band.#

•  Kink%deformaGon%is%analogous%to%the%formaGon%of%knots%on%twisted%
rubber%bands.%

•  The%deformed%state%has%less%potenGal%energy%than%a%symmetric%state%
with%the%same%degree%of%twist%/%current%density.%

Carruthers & Davenport, 
Harwell, 1950s.

First observations in plasma 
of the KINK INSTABILITY:
R=25cm        
a=3cm
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Conceptual Picture of the Kink Instability:
Consider How Much “Twist” Is in the Magnetic Field

f (v, t) =
q
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⇡
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• Stability is parametrized by a ratio of the axial (toroidal) 
field to the azimuthal (poloidal) field:
– This is called the “Safety Factor” q
– Low q is “bad” for kink stability

• The poloidal field arises from the axial (toroidal) current
– Toroidal field is stabilizing, plasma current is destabilizing
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B =
Rc
2!
! Xc
Xb"b"c

−
1
"c
2" . #53$

The growth rate and frequency as functions of Rc are plotted
in Fig. 1 for qa=0.8. For low rotation, the linear growth and
damping rates of Eq. (48) are recovered. As Rc increases, the
growth rate decreases and becomes stabilized at large enough
rotation. For large Rc, the growth rates approach the
asymptotic limits, #%−2Xc / #!Xb"b$ ,−2/ #!"c$ with real fre-
quencies $%0,Rc"c=Vc /c. The first solution corresponds to
a mode locked to the inner stationary wall with the outer wall
acting as a perfect conductor. The second asymptotic solu-
tion corresponds to a mode locked to the outer rotating wall
with a damping rate corresponding to the L /R time of the
two-wall configuration. The eigenmode for this case does not
penetrate into the plasma region. Additionally, as shown in
Fig. 2, for a fixed rotation rate, the growth decays as qa rises.

For sufficiently high Rc, the growth rate changes sign.
The critical value of Rc necessary for stabilization can be
found from Eq. (51) and is given by

Rc,crit
2 = 4

− X%Xb + X%
2

Xc#Xb − Xc$
&1 + "cXc

"bXb
'2. #54$

This solution is plotted in Fig. 3 and shows Rc,crit rising as qa
drops below unity.

The critical magnetic Reynolds number becomes large in
two limits, when Xc→0 and when Xc→Xb. In the Xc=0
limit, r=c corresponds to the critical radius for marginal kink
stability; the stabilization process requires that both walls are
inside the critical radius. The second limit corresponds to the
case where the radial separation between the two walls
shrinks to zero. Stabilization requires a finite inductance in
the exterior wall configuration (as measured by the parameter
!). The presence of ! allows for a phase shift between the
two walls, which, in the presence of rotation, couples the

stable RWM root of Eq. (48) to the destabilizing root. In Fig.
4, a plot of critical rotation rate versus the second wall loca-
tion is shown for various values of qa.

There is a critical value of Xc that minimizes the required
Rc. This is given by

Xc = Xb
1

2 + #"c/"b$
. #55$

Evaluating the critical Reynolds number at the minimizes
value of Xc, we obtain a minimum critical rotation rate,

Rc,crit,min = 8(X + X2

2
(1 + "c/"b

2
, #56$

where X=−X% /Xb. The critical condition on Xc can be trans-
lated into an optimal location of the wall position c. This is
given by

FIG. 1. The growth rates (solid line) and real frequencies (dotted lines)
corresponding to parameters of the UW rotating wall experiment as calcu-
lated from Eqs. (50) and (51). The parameters used are a=9.5 cm,b
=10.2 cm,c=12.6 cm,"b=11.6 ms,"c=14.5 ms. As Rc increases, the
growth rate of the unstable mode decreases and becomes stabilized at large
enough rotation. For large Rc, the asymptotic limits, #%−2Xc / #!Xb"b$ ,
−2/ #!"c$, $%0,mVc /c are approached.

FIG. 2. The growth rate of the unstable mode as a function of qa for differ-
ent values of Rc for the same parameters as Fig. 1. For no rotation, the
instability onsets with qa& 1. For higher values of Rc, a stable operation can
be achieved at lower qa. The solid, dotted, dashed, and dash–dotted curves
correspond to Rc=0,3 ,6 ,9, respectively.

FIG. 3. The critical rotation rate for stabilization versus qa as calculated
from Eq. (54). The critical rotation rate rises monotonically as qa drops
below unity.

Phys. Plasmas, Vol. 11, No. 9, September 2004 Stabilization of line tied resistive wall kink modes… 4235

Downloaded 13 May 2008 to 130.15.126.81. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

Toroidal Geometry Provides Additional Complexities
... Not a Single Limit, But Rather Regions of Instability

BASIC KINK MODE
• Long wavelength mode driven by pressure &

current gradient

Cylindrical k ~ 2π/L Toroidal: low n = 1

• Unstable when δWp + δW∞

v < 0

• Dispersion Relation:  γ2K + δWp + δW∞

v = 0 ,
where K is kinetic fluid mass

• Define Γ∞
2  = [δWp + δW∞

v]/K ~ [vAlfvén/L]2

Navratil, APS-DPP ’04

5 
JM Hanson/APS Division of plasma physics meeting/November 2013 

Stability Limit Set by Onset of n=1 Resistive Wall Modes 

•  The resistive wall mode is an external 
kink mode that is moderated by 
external conducting structures 
•  Grows on wall eddy current decay 

timescale �w 

•  Destabilized by free energy in 
pressure and current density 
gradients 

•  Stability resonant with edge-safety 
factor q(a) 
•  n=1 RWM unstable below integer 

values of q(a) 

[J. A. Wesson, Nucl. Fusion 18 (1978) 87] 

084-13/JMH/jy 
C. C. Hegna, PoP 2004
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What Happens When you Cross a Stability Boundary?
… Tokamak Plasmas Tend to Go Poof

15 
JM Hanson/APS Division of plasma physics meeting/November 2013 

Disruptive Limit Encountered at q = 2 

DIII-D RFX-MOD 

•  Passive stability possible for q > 2 
–  Some discharges encounter tearing instabilities 

•  Hard, disruptive limit at q ≈ 2 

084-13/JMH/jy 

q (a) 

Ip (MA) 

BASIC KINK MODE
• Long wavelength mode driven by pressure &

current gradient

Cylindrical k ~ 2π/L Toroidal: low n = 1

• Unstable when δWp + δW∞

v < 0

• Dispersion Relation:  γ2K + δWp + δW∞

v = 0 ,
where K is kinetic fluid mass

• Define Γ∞
2  = [δWp + δW∞

v]/K ~ [vAlfvén/L]2

J. Hanson, APS-DPP 2013 “Disruption”
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Some MHD Stability Limits Can be Overcome by 
Active ControlObjectives of Control - Stabilization 

•  Open-loop instability: 

•  Plasma vertical instability (caused 
by destabilizing curvature): 

FEEDBACK 

applied 
force 

applied 
force 

FEEDBACK 

Anti-symmetric coils 
provide radial field to 

apply force that opposes 
plasma vertical motion 

28.0!
Courtesy M. Walker
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Some MHD Stability Limits Can be Overcome by 
Active Control … Example: Elongation ControlObjectives of Control - Stabilization 

•  Open-loop instability: 

•  Plasma vertical instability (caused 
by destabilizing curvature): 

FEEDBACK 

applied 
force 

applied 
force 

FEEDBACK 

Anti-symmetric coils 
provide radial field to 

apply force that opposes 
plasma vertical motion 

28.0!
Courtesy M. Walker

Objectives of Control - Stabilization 

•  Open-loop instability: 

•  Plasma vertical instability (caused 
by destabilizing curvature): 

FEEDBACK 

applied 
force 

applied 
force 

FEEDBACK 

Anti-symmetric coils 
provide radial field to 

apply force that opposes 
plasma vertical motion 

28.0!
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2nd Example: 
Active Feedback Can Overcome the Current Limit

27 
JM Hanson/APS Division of plasma physics meeting/November 2013 

Magnetic Feedback System Designed for RWM Control 

•  System designed for controlling perturbed, 
non-axisymmetric field 

•  Feedback on magnetic plasma response used for error 
field correction in stable discharges  

•  Control of unstable resistive wall modes also possible 

084-13/JMH/jy 

Courtesy J. Hanson

28 
JM Hanson/APS Division of plasma physics meeting/November 2013 

Magnetic Feedback Extends Stability Boundaries 

•  Feedback extends discharge 
lifetime for > 100 �w 

•  Control lost when power 
supplies saturate 

DIII-D 
timeseries 

RFX timeseries 

DIII-D RFX-MOD 

•  Feedback extends 
discharge lifetime for            
> 10 �w 

�w = 50 ms 

084-13/JMH/jy 

Ip (MA) 

q95 

Bp 

Ip (A) 

Br 

Lower q Accessed
(… to a point)
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Pressure Limits are Also an Active Area of MHD Research

Additionally: ideal MHD beta limit

3

Density of Particles 
à Fusion Power Density

Pl
a

sm
a

 C
ur

re
nt

 
à

G
o

o
d

 E
ne

rg
y 

C
o

nf
in

e
m

e
nt

Density Limit

Pressure 
Limit

Ve
ry MHD-based MHD-based

maybe
MHD-based

(competing theories)

Current Limit
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Pressure Limits are Parametrized by the Plasma Beta
... A Measure of Magnetic Field “Utilization”

• Conceptually the plasma beta is as follows:

• Mathematically we write it:

• Typical values of b are only few %

• Low beta is more MHD stable 
– … but lower pressure (less fusion) at constant magnetic field

• Above a critical beta MHD instability is found

plasma pressure
magnetic pressure

� = 2µ0<p>
B2

2

� = 2µ0<p>
B2

2
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The Pressure Limit Originates from “Interchange” 
Instabilities (Mixed with Kinking Component)

• Mechanical Example
– Replace Gravity with 

Magnetic Field
– (imperfect analogy)

Interchange Instability and “Bubbles”

Linear

Nonlinear:
  Bubbles, 
  fingers, 
  vortices,
  …

Gravitational Rayleigh-Taylor
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The Pressure Limit Originates from “Interchange” 
Instabilities (Mixed with Kinking Component)

• Mechanical Example
– Replace Gravity with 

Magnetic Field
– (imperfect analogy)

• Tokamak Example
– “Bubble” is the 

plasma escaping
– Called “Ballooning”

Aydemir Nucl Fusion 2017

Interchange Instability and “Bubbles”

Linear

Nonlinear:
  Bubbles, 
  fingers, 
  vortices,
  …

Gravitational Rayleigh-Taylor
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Tokamak Pressure Limits Follow the “Normalized Beta”

Page	9T Luce  NAS study visit 01 February 2018

MHD Stability Pressure Limits
• MHD equilibrium is given by: 

Ñp = j x B = (Ñ x B) x B/µ0

• There is a dimensionless parameter 
2µ0p/B2, which is the ratio of thermal to 
magnetic energy (b) and is << 1

• In a tokamak, the following parameters 
are also small: r/R and BP/BT µ I/aBT

• With 3 small parameters, ratios yield two 
O(1) parameters: i = 1/q = RBP/rBT and 
b/(I/aBT), which describe limits on current 
and pressure in ideal MHD, predicted by 
theory and validated by experiment

• Achievable beta is Found to 
rise with Normalized Current

– (µ0IN is dimensionless)

• A consistent beta limit when 
normalized to IN is found:

• The critical bN is around 3
– Give or take …
– Complex calculations

� = 2µ0<p>
B2

IN = IP
aB�

2

� = 2µ0<p>
B2

IN = IP
aB�

�N = �
IN

= �✓
IP
aB�

◆

2



76
C Paz-Soldan/SULI 1WC/06-2019

4/12/2018 NAS	Panel:		SPARC 28

Engineering				(SPARC	B3R1.3 =	3300,	for	ITER	=	1600,	for	JET	=	270) Performance

However,	In	Engineering	Parameters	And	Fusion	Power,	
No	Machine	Like	SPARC	(or	ITER)	Has	Ever	Been	Built

Recent		
C-Mod

Side-note on the High-Field Breakeven Path (SPARC):
High B à High IP w/o Kinks à High tE à Fusion Gain

M. Greenwald et al, NAS 2018

Existing Data

Existing Data

• Pressure (p) can be higher at 
high magnetic field
– w/ same Beta (b )

• Energy confinement time (tE) 
will be higher at high current
– w/ same Safety Factor (q)

16

● Consider	a	12T,	HTS	version	of	
AUG	or	DIII-D

– About	1/64	volume,	weight,	

cost	of	ITER

● No	blanket	- keep	size	small

● Pulses	would	be	short	to	avoid	
engineering	challenges	

associated	with	current	drive,	

heat	removal	from	first	wall,	

nuclear	“footprint”,	etc.	

We’re	Not	Ready	To	Build	A	Machine	in	the	ARC	Class	
SPARC:		An	Intermediate	Step	From	Today’s	High-Field	Experiments

ITER

ARC

SPARC

4/12/2018 NAS	Panel:		SPARC
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Review of Concepts –
Global MHD Stability Limits

• Fusion requires high pressure and good energy confinement
– MHD sets limits on both

• Increasing current is good for energy confinement
– Until it is limited by the “Kink Instability”
– Parametrized by the safety factor (q)

• Increasing pressure is needed for fusion
– Until it is limited by “Interchange” instabilities
– Parametrized by the normalized beta (bN)

• Active feedback with magnetic coils can push back on both
– Expands the achievable operating space
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• Pre-amble: Why the MHD model?

• Development of the MHD Equations

• MHD Equilibrium: 1-D, 2-D, 3-D Configurations

• MHD and its Relation to Global Operational Limits

• Brief Tour of Common MHD Instabilities and Their Control

Outline of Presentation
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Reality: Tokamaks Do Not Operate so Close to Global 
Limits. Yet Other (“Lesser”) Instabilities Still Exist

Heat H
ea
t

Plasma Pressure Profile

”edge”

“core”

distance from centre

p
re

ss
ur

e



80
C Paz-Soldan/SULI 1WC/06-2019

The ”Magnetic Island” is Probably the Most Common 
Instability the Tokamak Encounters

• Words

Þ

The island has many names
• “Tearing mode”
• “Neoclassical tearing mode”
• “Locked Mode”

The name changes 
based on its origin 

and dynamics
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Magnetic Islands Flatten the Profile Locally
... And can Terminate the Plasma if they get Too Big

Plasma Pressure Profile

distance from centre

p
re

ss
ur

e
Island
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The ITER plan for NTM Control is Injection of 
~ 100 GHz Microwaves to Locally “Heal” Island
• This technique is “routine” for many tokamak regimes
• Open physics questions remain regarding:

– How close to island do you need to aim? How much power?
– Is it a direct or indirect effect?
– Why does it not work in certain regimes?

Microwave
Launch
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The ITER plan for NTM Control is Injection of 
~ 100 GHz Microwaves to Locally “Heal” Island
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The Very Core of the Plasma Undergoes a ~ Benign ~ 
“Sawtooth” Relaxation In Many Tokamak Regimes

Plasma Pressure Profile

“core”

distance from centre

p
re

ss
ur

e

Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 4

What is the Edge Localized Mode (ELM)?

H-Mode

L-Mode

r/a

Plasma pressure

0                                         1

Pedestal

Edge 
transport 
barrier

Crash

reforming

ELM

fELM ~ 1Hz
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The Very Core of the Plasma Undergoes a ~ Benign ~ 
“Sawtooth” Relaxation In Many Tokamak Regimes

Plasma Pressure Profile

“core”

distance from centre

p
re

ss
ur

e

Page 25ITER International Summer School, Austin, TX USA   31 May 2010

¾ Sawteeth are periodic oscillations 
in the plasma temperature with a 
characteristic sawtooth shape

¾ Slow rise in the core temperature 
followed by a rapid crash 

¾ Outside the q=1 (q~rBT/(RBθ)) 
‘sawtooth inversion’ radius, the 
temperature rises rapidly and 
then falls slowly

What are Sawteeth?

P Blanchard, PhD thesis, EPFL (2002)

Te at Four Radial Locations in TCV

P Blanchard, PhD thesis, EPFL (2002) 

Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 4

What is the Edge Localized Mode (ELM)?

H-Mode

L-Mode

r/a

Plasma pressure

0                                         1

Pedestal

Edge 
transport 
barrier

Crash

reforming

ELM

fELM ~ 1Hz

** Name comes from shape of below
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The Tokamak “Pedestal” Can be Locally MHD Unstable

Plasma Pressure Profile

pedestal

”edge”

“core”

distance from centre

p
re

ss
ur

e
pedestal
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The Tokamak “Pedestal” Can be Locally MHD Unstable
… Yielding an “Edge Localized Mode” (ELM)

Plasma Pressure Profile

pedestal

distance from centre

p
re

ss
ur

e

Courtesy: MAST / CCFE

Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 4

What is the Edge Localized Mode (ELM)?

H-Mode

L-Mode

r/a

Plasma pressure

0                                         1

Pedestal

Edge 
transport 
barrier

Crash

reforming

ELM

fELM ~ 1Hz
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Why ELMs are Bad?
Because they Dump Energy Too Quickly and Melt Stuff

Heat H
ea
t

Plasma Pressure Profile

pedestal

distance from centre

p
re

ss
ur

e

Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 4

What is the Edge Localized Mode (ELM)?

H-Mode

L-Mode

r/a

Plasma pressure

0                                         1

Pedestal

Edge 
transport 
barrier

Crash

reforming

ELM

fELM ~ 1Hz
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Why ELMs are Bad?
Because they Dump Energy Too Quickly and Melt Stuff

Heat H
ea
t

Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 12

Why is ELM control urgent for ITER?

ΔWELM = 1MJ

ΔWELM = 0.5MJ

JET

WITER 
~350 MJ

ELM mitigation is required for a steady state 
operation of ITER!

Using best estimates for divertor wetted area and in-
out asymmetry, one finds

ΔWELM = QELM x Sin x (1 + Pout/Pin) = 0.5 MJ/m2 x 1.3 
m2 x 1.5 ~ 1 MJ 

This requires a decrease in the ‘natural’ ELM size by a 
factor of ~ 20

• Small Frequent ELMs are OK
• Large infrequent ELMs are NOT OK
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Most Tokamak Discharges are Limit-Cycle Regulated 
by both Sawteeth in the Core and ELMs in the Edge

• “Stationary” but not “Stable” per-se 

Plasma Current

Plasma Pressure

Core Temperature
(Sawteeth)

Edge Vis. Emission
(ELMs)
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ITER Has Two Strategies for ELM Control
#1: “Resonant Magnetic Perturbation” (RMP)

Page 37 
2015 ITER International School – A. Loarte 

University of Science and Technology of China – Hefei    © 2015  ITER Organization 

ITER ELM Control Techniques 

• Two principal techniques under development: 
– 3×9 array of RMP coils, launching mainly n=4, with 90 kAturn capability 
– high frequency (f ≤ 16 Hz) pellet injection system, allowing finj ~ 50 Hz 

RMP Coils 

Pellet Injection geometry ITER: 3 x 9 perturbation coils

Nucl. Fusion 51 (2011) 023003 J.-K. Park et al

C-coil

I-coil
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Figure 1. Cross section of DIII-D in the year 2006, illustrating
locations of the PF F-coils, one C-coil and two I-coils, with respect
to a typical Ohmic plasma (q95 = 3.3, BT0 = 1.0T , βN = 0.5) used
for the error field and locking experiments.

C-coil
outside vessel

Upper I-coil
inside vessel

Lower I-coil
inside vessel

Figure 2. Illustration of C-coils and I-coils in DIII-D.

worst case, coil F7A, one of the four coils on the low-field side
of the plasma used to apply vertical field, was reported to have
shifted horizontally about 19 mm from the TF magnetic centre,
and coils F5A, F8A and F9A were tilted 14 ∼ 16 mm from the
plane of the TF. These are ∼2 times larger than their specified
allowable placement errors. The other significant known error
sources were two large TF-coil current feeds, whose error fields
were calculated from their known geometries. One of the feeds
became temporarily accessible in 2005, and it was rebuilt for
low error field. This paper includes data from experiments in
2004 with the larger current feed error, as well as experiments
since 2006 with a smaller error.

Having discovered the geometry of the DIII-D PF error,
a flexible coil array was designed for error correction (the
C-coils) and was installed in 1994. It consists of six
approximately rectangular coils, spaced uniformly around the
tokamak outside the TF coils, and centred vertically about the

tokamak midplane. The array geometry is illustrated in [4]
and here in figure 2. The C-coils are connected to three power
supplies to generate an n = 1 magnetic field of arbitrary
toroidal phase in the plasma volume while keeping the n = 3
harmonic zero. The optimal amplitudes and toroidal phases
for the best locked plasma avoidance in low-density, low-β,
Ohmically-heated plasmas that are reproducibly sensitive to
locking were found by a fit to the data from dedicated locking
experiments. Error correction by the combined n = 1 coil and
C-coils was better than by either one alone [4].

An array of 12 identical internal coils (I-coils) was
installed in 2003, initially for active feedback stabilization of
RWMs [22]. The array consists of six coils almost equally
spaced in each of the two rows around the torus, an upper
row above the tokamak outer midplane and a mirror lower
row below it (see figure 2). It was quickly determined that
the I-coils were also good error correction coils. For the case
of n = 1 current distributions in both rows, the I-coil array
allows three degrees of freedom. First, the toroidal phasing,
"φ = φlower − φupper, is the difference between the lower and
upper n = 1 current harmonic phases. Second, the toroidal
phase, φ0 = (φlower + φupper)/2, is the average phase of the
two current harmonics. This phase is also, within a few
degrees, the toroidal phase of the n = 1 Fourier harmonic
of δBx · n̂ just inside the last closed flux surface. The third
independent variable is the magnitude of the Fourier coefficient
(peak amplitude) of the upper and lower n = 1 currents, Ipeak,
which were equal in the experiments reported here. At DIII-D
each I-coil is paired with the coil diametrically opposite, and
the two are connected electrically in series for opposite current
directions. Then, each lower pair is connected electrically in
series with the upper pair that is the desired phasing "φ away
toroidally. A set of four connected coils is called a ‘quartet’,
and each quartet is powered by one of the three independent
bipolar power supplies. As with the C-coils, the power supplies
are programmed to produce an n = 1 harmonic with no
n = 3. However, even the improved correction using I-coils
did not obey the expected outcome, the low rational resonant
Fourier harmonics of the measured external intrinsic error and
correction fields would be approximately equal in magnitude
and 180◦ out of phase. Instead, there appeared to be a still
unknown large intrinsic error source. Meanwhile, the resulting
empirical error correction algorithm was subsequently applied
routinely and beneficially to most DIII-D discharges.

The accumulating uncertainty of the true DIII-D intrinsic
error motivated a new, thorough, direct measurement campaign
to find all significant error sources. It improved upon
[20] by referencing the magnetic measurements to absolute
benchmarks rather than to the TF [23]. The new results
most relevant to this paper were (1) the mutual misalignments
between the PF and TF coils are moderately smaller than
reported in [20], but they are still larger than design
specifications; (2) the TF coil is shifted horizontally by 4.5 mm
from its specified position and tilted 1.05 mrad from vertical
alignment, both out of specification; (3) despite extensive
searching, no other new large errors were discovered. Figure 3
shows the recalculated spectrum of the intrinsic error field
before 2005 (with the larger TF feed error) based on the new
measurements, and figure 4 shows the spectrum of the intrinsic
error field after 2005 (with the smaller TF feed error). Note in

3

DIII-D: 2 x 6 perturbation coils

Courtesy: Park NF 2011
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RMP Technique was Pioneered at DIII-D in 2000s
… Since then Exported to Many Countries (& ITER)

Nucl. Fusion 51 (2011) 023003 J.-K. Park et al
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Figure 1. Cross section of DIII-D in the year 2006, illustrating
locations of the PF F-coils, one C-coil and two I-coils, with respect
to a typical Ohmic plasma (q95 = 3.3, BT0 = 1.0T , βN = 0.5) used
for the error field and locking experiments.

C-coil
outside vessel

Upper I-coil
inside vessel

Lower I-coil
inside vessel

Figure 2. Illustration of C-coils and I-coils in DIII-D.

worst case, coil F7A, one of the four coils on the low-field side
of the plasma used to apply vertical field, was reported to have
shifted horizontally about 19 mm from the TF magnetic centre,
and coils F5A, F8A and F9A were tilted 14 ∼ 16 mm from the
plane of the TF. These are ∼2 times larger than their specified
allowable placement errors. The other significant known error
sources were two large TF-coil current feeds, whose error fields
were calculated from their known geometries. One of the feeds
became temporarily accessible in 2005, and it was rebuilt for
low error field. This paper includes data from experiments in
2004 with the larger current feed error, as well as experiments
since 2006 with a smaller error.

Having discovered the geometry of the DIII-D PF error,
a flexible coil array was designed for error correction (the
C-coils) and was installed in 1994. It consists of six
approximately rectangular coils, spaced uniformly around the
tokamak outside the TF coils, and centred vertically about the

tokamak midplane. The array geometry is illustrated in [4]
and here in figure 2. The C-coils are connected to three power
supplies to generate an n = 1 magnetic field of arbitrary
toroidal phase in the plasma volume while keeping the n = 3
harmonic zero. The optimal amplitudes and toroidal phases
for the best locked plasma avoidance in low-density, low-β,
Ohmically-heated plasmas that are reproducibly sensitive to
locking were found by a fit to the data from dedicated locking
experiments. Error correction by the combined n = 1 coil and
C-coils was better than by either one alone [4].

An array of 12 identical internal coils (I-coils) was
installed in 2003, initially for active feedback stabilization of
RWMs [22]. The array consists of six coils almost equally
spaced in each of the two rows around the torus, an upper
row above the tokamak outer midplane and a mirror lower
row below it (see figure 2). It was quickly determined that
the I-coils were also good error correction coils. For the case
of n = 1 current distributions in both rows, the I-coil array
allows three degrees of freedom. First, the toroidal phasing,
"φ = φlower − φupper, is the difference between the lower and
upper n = 1 current harmonic phases. Second, the toroidal
phase, φ0 = (φlower + φupper)/2, is the average phase of the
two current harmonics. This phase is also, within a few
degrees, the toroidal phase of the n = 1 Fourier harmonic
of δBx · n̂ just inside the last closed flux surface. The third
independent variable is the magnitude of the Fourier coefficient
(peak amplitude) of the upper and lower n = 1 currents, Ipeak,
which were equal in the experiments reported here. At DIII-D
each I-coil is paired with the coil diametrically opposite, and
the two are connected electrically in series for opposite current
directions. Then, each lower pair is connected electrically in
series with the upper pair that is the desired phasing "φ away
toroidally. A set of four connected coils is called a ‘quartet’,
and each quartet is powered by one of the three independent
bipolar power supplies. As with the C-coils, the power supplies
are programmed to produce an n = 1 harmonic with no
n = 3. However, even the improved correction using I-coils
did not obey the expected outcome, the low rational resonant
Fourier harmonics of the measured external intrinsic error and
correction fields would be approximately equal in magnitude
and 180◦ out of phase. Instead, there appeared to be a still
unknown large intrinsic error source. Meanwhile, the resulting
empirical error correction algorithm was subsequently applied
routinely and beneficially to most DIII-D discharges.

The accumulating uncertainty of the true DIII-D intrinsic
error motivated a new, thorough, direct measurement campaign
to find all significant error sources. It improved upon
[20] by referencing the magnetic measurements to absolute
benchmarks rather than to the TF [23]. The new results
most relevant to this paper were (1) the mutual misalignments
between the PF and TF coils are moderately smaller than
reported in [20], but they are still larger than design
specifications; (2) the TF coil is shifted horizontally by 4.5 mm
from its specified position and tilted 1.05 mrad from vertical
alignment, both out of specification; (3) despite extensive
searching, no other new large errors were discovered. Figure 3
shows the recalculated spectrum of the intrinsic error field
before 2005 (with the larger TF feed error) based on the new
measurements, and figure 4 shows the spectrum of the intrinsic
error field after 2005 (with the smaller TF feed error). Note in

3

DIII-D: 2 x 6 perturbation coils

Courtesy: Park NF 2011

2 
MR Wade/IAEA/October 2012 

PERSISTENT SURVEILLANCE FOR 
PIPELINE PROTECTION AND THREAT INTERDICTION 

•  ELM suppression operating space 
expanded to include ITER baseline 

DIII-D Research Has Increased Confidence in Ability to 
Achieve RMP ELM Suppression on ITER  

•  Significant advances in physics 
understanding of RMP effects 

DIII-D 
I-coils 

Major Radius (m) 

Z 
(m

) 
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Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 26

ELM suppression window on DIII-D

9 ELM suppression achieved in a narrow q95 window on DIII-D with an n=3 field induced 
by the I-coils. 

9 q95 ELM suppression window can be enlarged slightly with a mixed n=1 and n=3 fileds.

T.E. Evans, et al., 
NF 48 (2008) 024002

RMP-ELM Control Technique is Very Sensitive to the 
Edge Safety Factor (q) – “Resonant” Effect
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ITER Has Two Strategies for ELM Control
#2: Pellet Injection – Frequent Direct ELM Destabilization

20 Wilcox / DIII-D FSM 2019-03-22 

ITER will have pellet pacing hardware, and DIII-D is uniquely 
positioned to test models and extrapolate physics 

D3DPI 

0.8mm pellets 
~100-150 m/s 

(2 mbar-L, 1x1020 

atoms per pellet) 

ORNL 3 barrel 
injector 

20 Hz per gun 

HFS 

Mid 

ITER like 
 X-point Injection line 

ITER 

[S. Maruyama, IAEA2012] 

HFS 

DIII-D 

Tangential 

[S. Maruyama, IAEA2012] 

Page	32T Luce  NAS study visit 01 February 2018

Disruption Mitigation Is Still Mandatory

• Mitigation pellets are 
substantially larger than 
ordinary fuelling pellets 
(leftmost)

13	mm
20	mm

17	mm

28	mm

• ITER must be ready to mitigate disruptions at any operating point
– Learning to run a stationary discharge will not happen in a day
– Components and power supplies will fail
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On-Demand ELM Destabilization is Achieved via 
Locally Exceeding the Critical Pedestal Pressure

L. Baylor, APS-DPP 2014
7 Wilcox / DIII-D FSM 2019-03-22 

ELM Triggering by Pellet Hypothesis - 3D Pressure 
Perturbation in Flux Tubes Results in Ballooning Mode 

Pe 

L 

L 

ne 
cs 5x106 m/s 

Te 
qe 

L 

3x108 m/s 

!  Pellet cloud releases from pellet and 
expands along a flux tube 

!  Density from cloud expands along 
flux tubes at the ion sound speed  cs 

!  Temperature ‘cold wave’ travels 
along the flux tube at the thermal 
speed (~50x cs) 

!  Heat is absorbed in the cloud 
resulting in a local pressure increase 

!  Pressure decays and expands along 
the flux tube with a lower pressure 
far from the cloud 

!  Strong local cross field pressure 
gradients produced along the flux 
tube on �s time scales result in a 
ballooning mode 

[L.R. Baylor, APS-DPP 2014] 
6 Wilcox / DIII-D FSM 2019-03-22 

ELMs can be triggered using pellet injection 
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Review of Concepts –
Commonly Observed MHD Instabilities

• A few of the most commonly encountered instabilities:
– Magnetic Island
– Sawtooth
– ELM

• Main control tools deployed on ITER:
– Microwave heating
– Resonant Magnetic Perturbations
– Injected Pellets

• Next-gen control tools / more stable regimes are under 
active study / development !!
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• Pre-amble: Why the MHD model?

• Development of the MHD Model

• MHD Equilibrium: 1-D, 2-D, 3-D Configurations

• MHD and its Relation to Global Operational Limits

• Brief Tour of Common MHD Instabilities and Their Control

Outline of Presentation

THE END
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Getting involved in the DIII-D Program

• General Atomics runs DIII-D on Behalf of the U.S. Dept of Energy
– You can’t directly do your PhD with General Atomics

• Your next step is picking a university PhD / MSc program
– Several programs send students to work / live @ DIII-D
– Graduate training need not be at a “big science” facility

• If you are interested specifically in the DIII-D Tokamak, these 
university programs / professors may have positions @ DIII-D:

• Princeton: Egemen Kolemen
• MIT: Anne White / Miklos Porkolab
• Columbia: Gerald Navratil
• Auburn: David Ennis
• Lehigh: Eugenio Schuster

• UCLA: Troy Carter
• UC San Diego: George Tynan
• UC Irvine: William Heidbrink
• UW Madison: Oliver Schmitz / Ray Fonck
• UT Knoxville: David Donovan
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Y. Liang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJDPG 2010 No 11

Tungsten Erosion

Q
 =

 0
.9

 M
J/

m
2

Q
 =

 1
.0

 M
J/

m
2

Q
 =

 1
.6

 M
J/

m
2

ELM Simulations on QSPA
(0.1-0.6 ms, 30º to surface)

<0.4 MJ/m2

Negligible erosion

0.4-1.0 MJ/m2 (JET<1.0MJ/m2)
Edge melting and surface 
cracking

1.0-1.6 MJ/m2

Surface melting, bridge formation 
and droplet ejection

Zhitlukhin JNM 2007

Material Properties with Different Impulsive Heat Loads 
have been Characterized ... It’s not Pretty !!
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Why ELMs are Bad?
Because they Dump Energy Too Quickly and Melt Stuff

Heat H
ea
t

2 R. Nazikian/DIII-D PAC/Apr. 2016 021-16/RN/rs 

ITER priorities:  
 

1.  Low current phase:  
! Need impurity removal 

2.  High current phase 
!  Need > 50x peak heat 

flux mitigation 
 
 

ELM Mitigation Compatible with High Performance Operation 
is a Requirement for ITER and Future Reactors 

Natural ELMs 

Low current 

High power DT 

 
 
DIII-D goals: 
 

• Demonstrate effective ELM control solutions in ITER & SS regimes 
 

• Test and validate model predictions for extrapolation to reactors 

A. Loarte, et al., NF 54 (2014) 033007 

ITER ELM Control Requirement

** Plasma Current is Bad for Stability
… but good for confinement
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D.A. Humphreys 
General Atomics, San Diego, California 

4th ITER International Summer School 

MHD and Plasma Control  
in Magnetic Fusion Devices 
May 31 – June 4, 2010 

High Reliability Operation and Disruption Control in 

Tokamaks 

ITER

Physics vs Engineering

• ss
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Page 41ITER International Summer School, Austin, TX USA   31 May 2010

Disruptions occur in tokamak plasmas when unstable p(r),j(r) develop
⇒ unstable MHD modes grow

 ⇒ plasma confinement is destroyed
 

(thermal quench)
 ⇒ plasma current vanishes

 
(current quench)

Typical JET timescales
•

 
Thermal quench < 1ms

 
⇒ deposits 

plasma thermal energy on plasma 
facing components (PFCs)

•
 

Current quench > 10 ms
 

⇒ deposits 
plasma magnetic energy by radiation 
on PFCs & runaway electrons

What are Disruptions?

Expected values for ITER
•

 
Thermal energy

 
~ 300 MJ

•
 

Magnetic energy
 

~ 600 MJ
•

 
Thermal quench time ~ 1.5 -

 
3 ms

•
 

Current quench time  ~ 20 -
 

40 ms

Disruptions

• ss
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Tearing Instability

Good conduction 
about magnetic island:

® flattens pressure, 
destroys confinement

® requires ‘rational’ q flux surfaces to 
establish these island structures

® q profile plays a key role in 
governing tearing stability

Soft X ray tomography
of flux tearing instability

JET


