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Deuterium 
~0.01 MeV 

Helium 
3.5 MeV 

Neutron 
14.1 MeV 

Tritium 
~0.01 MeV 

•  Sustained fusion reactions require enough particles (density) 
that are energetic enough (temperature) and collide often 
enough (confinement time).  

  

Plasma Physics is the Basis for Fusion Research 
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Deuterium 
~0.01 MeV 

Helium 
3.5 MeV 

Neutron 
14.1 MeV 

Tritium 
~0.01 MeV 

•  Sustained fusion reactions require enough particles (density) 
that are energetic enough (temperature) and collide often 
enough (confinement time).  

  
•  The fusion triple product is the figure of merit: 

T~100-200 million K  

n~2-3x1020 ions/m3 

τ ~1-2 s 

D & T is a plasma at 
these temperatures 

Plasma Physics is the Basis for Fusion Research 
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Typical velocity of a 100 million K ion:  

Even with ~1020 ions/m3 , the ion would travel ~10 km 
before colliding with another  
 
It would be crazy to build a fusion reactor that big! 

We can understand a lot about how fusion devices 
confine plasma by studying single particle motion. 

The trick: use magnetic fields 

charged particle magnetic field line 

with magnetic field  

no magnetic field  
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•  Gyromotion about a guiding center 
•  Forces can cause guiding center drift 
•  Real life consequences:  

– Why do tokamaks have helical B fields? 
– What is a banana orbit? 
– Why are instabilities like Alfvén Eigenmodes bad for fusion?  

Outline 

•  NRL Plasma Formulary 
www.nrl.navy.mil/ppd/content/nrl-plasma-formulary 

•  Introduction to Plasma Physics and Controlled Fusion by F. Chen 

References 
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•  A particle with charge (q) moving with velocity (v) in the 
presence of electric and magnetic fields will experience a force: 

Charged Particles Feel The (Lorentz) Force 

We know from Newton’s 
second law of motion that 
force causes acceleration: 

A charged particle 
moving perpendicular to  
the magnetic field feels a force 
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•  Consider the motion of a particle in a constant, uniform B field 

How Does a Charged Particle Move in a Magnetic Field? 

y 

x

Then 

So we can write 
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y 

x

Let’s break this into components: 

Goal: Solve the Equations of Motion for a Charged 
Particle In A Magnetic Field 

The ‘dot’ represents   

Particles move freely 
along the field line 

Matching components:  
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Take Another Time Derivative & Substitute to Obtain 
Differential Equations For Each Spatial Coordinate 

Rewriting, we get 

These may remind you of the equations for a simple harmonic oscillator 
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Solve the Differential Equations  

These differential equations can be solved using sines and cosines: 

the magnitude of the initial 
velocity perpendicular to B 

an arbitrary phase 
to match the initial 
velocity conditions  
 

account for positive 
or negative q  
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Integrating, we obtain 

Larmor radius 

Cyclotron frequency 

•  Charged particles undergo circular orbits about a guiding center   

The Result: Circular Motion About A Guiding Center  
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Let’s take                   and  

Gyromotion of a Charged Particle In A Magnetic Field 

y 

x

For a positively charged particle: 

1. At             ,  
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Let’s take                   and  
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Gyromotion of a Charged Particle In A Magnetic Field 

For a negatively charged particle: 

1. At             ,  

2. At                    ,  - 
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y 

x

Gyromotion of Ions vs. Electrons 

•  Ions generally have a much larger Larmor radius than electrons 

•  The direction of gyromotion depends on the sign of the charge 

- 

In ITER, a typical deuterium ion  
with Ti=10 keV and B=5 Tesla would have  

An electron with Te=10 keV and B=5 Tesla has  

 (60 times smaller) 
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Magnetic Confinement Devices Should Be Much Larger 
Than the Larmor Radius 

• Particles are confined perpendicular 
to the applied magnetic field 
 

Single Magnetic 
Field Line 

Image credit: http://iter.rma.ac.be/en/img/MagneticConfinement.jpg 

• Tokamak approach: parallel 
confinement is achieved through 
toroidal geometry 
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Magnetic Mirrors 

Result:  
gyromotion + mirror force in the         direction 

The Br ends up causing additional 
acceleration in the z direction:  

The magnetic moment is 

mirror force  
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Magnetic Moment Is Conserved 

The magnetic moment is a constant of motion 

s is the 
coordinate along 
the field line 

We can write this is   

Then 

We also have 
conservation of energy: 

this is  
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1. As the particle moves to stronger B,        must increase. 

2. Since energy is conserved,       must decrease. 

3. If B is strong enough,                 and the particle is reflected.   

More Insight Into Magnetic Mirrors 

The particle is reflected when 
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Magnetic Mirror Confinement In Action 

Charged particles can be trapped 
by Earth’s magnetic field 

Multicusp Confinement Devices 

Early Fusion Experiments 
Ex: Tandem Mirror Experiment 
(LLNL,1980’s) and other variants 
(Polywell devices) 
 

Particles with enough 
v|| can still escape 
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Time-varying Electric and Magnetic Fields Can Be 
Used To Accelerate & Heat Particles 

•  A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

y 

x
- 
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y 

x
- 

•  A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

•  Particle gains energy as the applied electric field component oscillates 
at the cyclotron frequency (“in-phase” with the gyro-orbit). 

Cyclotron frequency 

 
Time-varying Electric and Magnetic Fields Can Be 
Used To Accelerate & Heat Particles 

The fluctuating    
accelerates the electron 
in the +x direction  



32 

y 

x
- 

•  A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

•  Particle gains energy as the applied electric field component oscillates 
at the cyclotron frequency (“in-phase” with the gyro-orbit). 

Cyclotron frequency 

 
Time-varying Electric and Magnetic Fields Can Be 
Used To Accelerate & Heat Particles 

Now      accelerates the 
electron in the -x direction  



33 

y 

x
- 

•  A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

•  Particle gains energy as the applied electric field component oscillates 
at the cyclotron frequency (“in-phase” with the gyro-orbit). 

Cyclotron frequency 

 
Time-varying Electric and Magnetic Fields Can Be 
Used To Accelerate & Heat Particles 
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y 

x
- 

•  A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

•  Particle gains energy as the applied electric field component oscillates 
at the cyclotron frequency (“in-phase” with the gyro-orbit). 

Ex: For an electron, what B corresponds to 
2.45 Ghz (microwave oven frequency)? 

 
The Cyclotron Frequency is Important for  
Cyclotron Resonance Heating 

Cyclotron frequency 
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Electron Cyclotron Heating In A Plasma 
Experiment at UW-Madison  

(2.45 GHz, B=875 Gauss)  

 
Example of Cyclotron Heating in Action 

In the DIII-D tokamak, use 
110 GHz second harmonic 
heating (B~2 Tesla) 
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Other Practical Applications: EM Emission from 
Charged Particle Acceleration 

•  Electron cyclotron emission (measure Te profiles) 
Produced by acceleration of gyrating charged particle   
EM radiation emitted at discrete frequencies: 

 
- 

B 

Detected radiated power is proportional to Te: 

- 

•  Bremsstrahlung emission 
Produced by deceleration of deflected charged particle 

Radiated power depends on ne, Te, charge state Zeff 
(can be used to measure Zeff)  
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y 

x

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field 
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y 

x

Accelerates due to E  

Faster velocity increases vxB  

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field 
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y 

x
Faster velocity increases vxB  

Decelerates  

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field 

Accelerates due to E  
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y 

x

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field 

Faster velocity increases vxB  

Decelerates  

Accelerates due to E  
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Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field 

y 

x

Ion guiding center drifts in the direction  
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Guiding Center Drift Due to E x B 

y 

x
- 

The ExB drift can be written more generally as 

•  ExB drift is independent of charge and mass 
   
•  Both electrons and ions move together 

Electron guiding center also drifts in the direction  
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Other Forces Can Cause Guiding Center Drift 

•  Any force perpendicular to B can cause particles to drift 

Drift due to force: 

Examples of forces:  gravity 

centrifugal 

Rc 

•  Bend the magnetic field into a donut shape  
•  No end losses because the field lines go 

around and close on themselves  
•  BUT a particle following a toroidal magnetic 

field would experience Fcf  
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A particle moving along a curved field 
line will drift up or down, depending on 
the sign of the charge 

The outward centrifugal force causes curvature drift 

z 

Btoroidal 

Rc 

Curvature Drift Due to Bending Field Lines 
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Spatially Varying Magnetic Field Strength 
Also Causes Drift 
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•  The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger 

Spatially Varying Magnetic Field Strength 
Also Causes Drift 
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- 

•  The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger 

•  The resulting drift velocity is described by: 

Spatially Varying Magnetic Field Strength 
Also Causes Drift 
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What Happens To Charged Particles In A 
Purely Toroidal Magnetic Field? 

Ion  
drift 

+ 
+ + 

+ 

Electron 
drift - 

- 
- 

- 

Btoroidal 

•  Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift: these effects add   

z 

ɸ 
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Charged Particles Will Drift Outward  

Ion  
drift 

Electron 
drift 

E 

+ 
+ + 

- 
- 

- 

+ 

- 

Btoroidal 

•  This means that no matter what, particles in a torus with a 
purely toroidal field will drift radially out and hit the walls.   

•  Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift   

z 

ɸ 
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Tokamak Solution: Add Poloidal Magnetic Field 

Iplasma 

Bpoloidal 

Toroidal: long way around 
Poloidal: short way around 
1. Use external coils to apply a toroidal magnetic field 
2. Drive toroidal current in the plasma to generate a poloidal magnetic field 

Btoroidal 

z 

ɸ 

•  The resulting helical magnetic field is much better at confining charged particles. 
•  The challenge: how to drive current in plasma in steady state while keeping the 

plasma stable and free of disruptions? 
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z 

ɸ 

R 

There Are Two Main Classes of Particle Orbits In Tokamaks 

Passing 

Bp 

Bt 

Particles with sufficient v||will follow the 
helical magnetic field around the torus 

z 

ɸ 

R 

Trapped 

Bp 

Bt 

Particles with lower v|| are 
reflected as they encounter 
stronger B and therefore execute 
“banana” orbits as they precess 
around the torus B 
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Image credit: euro-fusion.org 

Banana Orbits 

Particles that don’t have enough v|| 
are reflected by the mirror force at 
the high field side of the tokamak   

Trapped particles won’t hit the wall if the 
banana orbit width Δr is small enough 
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Image credit: Pace et. al.,Physics Today (2015)  

Classifying Particle Orbits In Tokamaks Is Important for Understanding 
Basic Physics Mechanisms Like Wave-Particle Interactions 
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  •  Occurs when the wave and particle orbit phases match after many cycles: 

ω = lωci + pωθ + nωζ  

Time to 
complete 
poloidal 
orbit  

Time to 
complete 
cyclotron 
orbit  

Time to 
complete 
toroidal 
orbit  

Particle Resonance With Alfvén Eigenmode (AE) Instabilities 

[W.W. Heidbrink, Phys. Plasmas 15 (2008)] 

AE mode 
frequency 
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  •  Occurs when the wave and particle orbit phases match after many cycles: 

Time to 
complete 
poloidal 
orbit  

ω = lωci + pωθ + nωζ  

Time to 
complete 
cyclotron 
orbit  

Time to 
complete 
toroidal 
orbit  

Particle Resonance With Alfvén Eigenmode (AE) Instabilities 

[W.W. Heidbrink, Phys. Plasmas 15 (2008)] 

AE mode 
frequency 

x

Ion Trajectory

t = 4.32 μs t = 2.16 μs

t = 0.00 μ

z

R
φ

z

R
φ

•  Power transfer can occur 
as the ion stays in phase 
with the wave as it 
traverses the mode 

[Pace, Physics Today (Oct. 2015)] 
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The Fast Ion Distribution Function Is “Most Simply” 
Described Using Constants of Motion 
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Small Changes in Particle Energy Can Cause Large 
Changes in Orbit Topology 
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•  Example of distribution 
function F(E,µ,Pϕ) for 
neutral beam injection, 
which is anisotropic  
and non-Maxwellian 
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injection 

[R. B. White, Theory of toroidally confined 
plasmas, Imperial College Press (2001)] 

There Can Be Several Different Populations 
of Fast Ions In Fusion Devices 

•  The distribution function 
for fusion products (alpha 
particles) is isotropic   
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Beam Deposition 
Resonance (Many Modes) 

Active Research: Calculating the Energetic Particle 
Distribution Function After Transport by Instabilities 

•  Transport can occur if fast 
ions intersect AE resonances 
in this “phase space” plot 

•  In certain conditions, AEs can 
cause significant transport of 
fast ions and significantly 
degrade fusion performance 
 
à  We are working on  

 controlling/avoiding AEs 
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•  Charged particles undergo 
gyromotion about magnetic fields, 
and are free to move along the 
magnetic field line.  

•  Depending on magnetic field 
geometry or the presence of other 
forces like electric fields, particles can 
drift across field lines (and even leave 
the systemàhit the walls). 

•  (One) challenge for fusion energy 
research is to confine enough 
charged particles that are energetic 
enough for long enough lengths of 
time to achieve sustained fusion. 

Conclusions 


