Single Particle Motion

Presented by Cami Collins

at the

SULI Introductory Course in Plasma Physics Princeton Plasma Physics Laboratory June 10, 2019

222222222

My path in plasma physics

plasma physics

stability transport turbulence

3

plasma physics engineering computer science stability transport turbulence shaping ELM controlled high bootstrap current high beta high confinement steady state dissipative divertor efficient current drive disruption mitigation

control

tritium breeding

Plasma Physics is the Basis for Fusion Research

 Sustained fusion reactions require enough particles (density) that are energetic enough (temperature) and collide often enough (confinement time).

Plasma Physics is the Basis for Fusion Research

- Sustained fusion reactions require enough particles (density) that are energetic enough (temperature) and collide often enough (confinement time).
- The fusion triple product is the figure of merit:

$$nT\tau_E \gtrsim 5 \times 10^{21} \text{ keV s m}^{-3}$$

 $T \sim 100-200$ million K $n \sim 2-3 \times 10^{20}$ ions/m³ $\tau \sim 1-2$ s

D & T is a plasma at these temperatures

We can understand a lot about how fusion devices confine plasma by studying single particle motion.

Typical velocity of a 100 million K ion:

no magnetic field

Even with $\sim 10^{20}$ ions/m³, the ion would travel ~ 10 km before colliding with another

It would be crazy to build a fusion reactor that big!

The trick: use magnetic fields

Outline

- Gyromotion about a guiding center
- Forces can cause guiding center drift
- Real life consequences:
 - Why do tokamaks have helical B fields?
 - What is a banana orbit?
 - Why are instabilities like Alfvén Eigenmodes bad for fusion?

References

- NRL Plasma Formulary
 <u>www.nrl.navy.mil/ppd/content/nrl-plasma-formulary</u>
- Introduction to Plasma Physics and Controlled Fusion by F. Chen

Charged Particles Feel The (Lorentz) Force

 A particle with charge (q) moving with velocity (v) in the presence of electric and magnetic fields will experience a force:

$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

We know from Newton's second law of motion that force causes acceleration:

A charged particle moving perpendicular to the magnetic field feels a force

 $\mathbf{F} = m\mathbf{a}$

How Does a Charged Particle Move in a Magnetic Field?

Consider the motion of a particle in a constant, uniform B field

Goal: Solve the Equations of Motion for a Charged Particle In A Magnetic Field

Take Another Time Derivative & Substitute to Obtain Differential Equations For Each Spatial Coordinate

Rewriting, we get

$$\ddot{v}_x = -\left(\frac{qB_z}{m}\right)^2 v_x \qquad \ddot{v}_y = -\left(\frac{qB_z}{m}\right)^2 v_y$$

These may remind you of the equations for a simple harmonic oscillator

Solve the Differential Equations

$$\ddot{v}_x = -\left(\frac{qB_z}{m}\right)^2 v_x \qquad \ddot{v}_y = -\left(\frac{qB_z}{m}\right)^2 v_y$$

These differential equations can be solved using sines and cosines:

$$v_{x} = v_{\perp} \cos\left(\frac{|q|B_{z}}{m}t + \phi_{0}\right) \qquad v_{y} = \mp v_{\perp} \sin\left(\frac{|q|B_{z}}{m}t + \phi_{0}\right)$$
account for positive or negative q
$$v_{\perp} = \sqrt{(v_{x}^{2} + v_{y}^{2})}$$
an arbitrary phase to match the initial velocity perpendicular to **B**

The Result: Circular Motion About A Guiding Center

$$v_x = v_{\perp} \cos\left(\frac{|q|B_z}{m}t + \phi_0\right)$$
 $v_y = \mp v_{\perp} \sin\left(\frac{|q|B_z}{m}t + \phi_0\right)$

Integrating, we obtain

$$x = \frac{mv_{\perp}}{|q|B_z} \sin\left(\frac{|q|B_z}{m}t + \phi_0\right) + x_0 \qquad y = \pm \frac{mv_{\perp}}{|q|B_z} \cos\left(\frac{|q|B_z}{m}t + \phi_0\right) + y_0$$

- Charged particles undergo circular orbits about a guiding center $\left(x_{0},y_{0}
ight)$

$$r_L \equiv rac{m v_\perp}{|q|B}$$
 Larmor radius $\omega_c \equiv rac{|q|B}{m}$ Cyclotron frequency

$$x = r_L \sin \left(\omega_c t + \phi_0\right) + x_0 \qquad \qquad y = \pm r_L \cos \left(\omega_c t + \phi_0\right) + y_0$$

Let's take
$$\,\phi_0=0\,$$
 and $\,x_0=y_0=0\,$

Х

В •

У

╋

For a positively charged particle:

1. At t=0 ,

x = 0 $y = r_L$

 $x = r_L$ y = 0

$$x = r_L \sin(\omega_c t + \phi_0) + x_0$$
 $y = \pm r_L \cos(\omega_c t + \phi_0) + y_0$

Let's take $\,\phi_0=0\,$ and $\,x_0=y_0=0\,$

For a positively charged particle:

1. At t=0 ,

x = 0 $y = r_L$

 $x = r_L$ y = 0

$$x = r_L \sin \left(\omega_c t + \phi_0\right) + x_0 \qquad \qquad y = \pm r_L \cos \left(\omega_c t + \phi_0\right) + y_0$$

Gyromotion of Ions vs. Electrons

- The direction of gyromotion depends on the sign of the charge
- Ions generally have a much larger Larmor radius than electrons

In ITER, a typical deuterium ion with $T_i=10$ keV and B=5 Tesla would have

$$v_{Ti} = \sqrt{\frac{kT_i}{m_i}} \approx 700 \text{ km/s}$$

$$r_L \equiv rac{m v_\perp}{|q|B} pprox 3 \ \mathrm{mm}$$

An electron with T_e=10 keV and B=5 Tesla has $r_L pprox 0.05 \ {
m mm}$ (60 times smaller)

Magnetic Confinement Devices Should Be Much Larger Than the Larmor Radius

$$\mathbf{r} = \left[r_L \sin\left(\omega_c t + \phi_0\right) + x_0\right] \mathbf{\hat{x}} + \left[r_L \cos\left(\omega_c t + \phi_0\right) + y_0\right] \mathbf{\hat{y}} + \left[v_{\parallel} t + z_0\right] \mathbf{\hat{z}}$$

 Particles are confined perpendicular to the applied magnetic field

 Tokamak approach: parallel confinement is achieved through toroidal geometry

Magnetic Mirrors

$$\mathbf{B} = B_r \mathbf{\hat{r}} + B_z \mathbf{\hat{z}} \qquad \mathbf{F} = q(\mathbf{v} \times \mathbf{B})$$

The B_r ends up causing additional acceleration in the z direction:

$$m\frac{dv_z}{dt} = -qv_\theta B_r$$

Result: gyromotion + mirror force in the $-\mathbf{\hat{z}}$ direction

$$F_z=-\frac{mv_\perp^2}{2B}\frac{\partial B_z}{\partial z}$$
 The magnetic moment is $\ \mu\equiv \frac{mv_\perp^2}{2B}$

mirror force $\mathbf{F}_{\parallel} = -\mu
abla_{\parallel} B$

Magnetic Moment Is Conserved

$$\mathbf{F}_{\parallel} = -\mu
abla_{\parallel} B \qquad \mu \equiv rac{m v_{\perp}^2}{2B}$$

The magnetic moment is a constant of motion $mrac{dv_{\parallel}}{dt} = -\mu v_{\parallel} rac{\partial B}{\partial s}$ s is the coordinate along the field line Then $\frac{d}{dt}\left(\frac{1}{2}mv_{\parallel}^{2}\right) = -\mu\frac{dB}{dt}$ We also have $\frac{d}{dt}\left(\frac{1}{2}mv_{\parallel}^{2} + \frac{1}{2}mv_{\perp}^{2}\right) = 0$ this is μB $B\frac{d\mu}{dt} = 0$

More Insight Into Magnetic Mirrors

2. Since energy is conserved, v_{\parallel} must decrease.

3. If B is strong enough, $v_{\parallel} \rightarrow 0$ and the particle is reflected.

$$E_{o} = \frac{1}{2}mv_{\parallel}^{2} + \frac{1}{2}mv_{\perp}^{2} \qquad v_{\parallel} = \pm\sqrt{\frac{2}{m}(E_{o} - \mu B)}$$

The particle is reflected when $E_o \leq \mu B$

Magnetic Mirror Confinement In Action

Multicusp Confinement Devices

Charged particles can be trapped by Earth's magnetic field

Early Fusion Experiments

Ex: Tandem Mirror Experiment (LLNL,1980's) and other variants (Polywell devices)

• A high frequency electro-magnetic field can be used to accelerate electrons or ions.

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

Cyclotron frequency

$$\omega_c \equiv \frac{|q|B}{m}$$

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

Cyclotron frequency

$$\omega_c \equiv \frac{|q|B}{m}$$

The Cyclotron Frequency is Important for Cyclotron Resonance Heating

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

Cyclotron frequency

$$\omega_c \equiv \frac{|q|B}{m}$$

Ex: For an electron, what B corresponds to 2.45 Ghz (microwave oven frequency)?

$$f = \frac{\omega_{ce}}{2\pi} = 2.45 \text{ GHz} \implies B = 875 \text{ Gauss}$$

Example of Cyclotron Heating in Action

Electron Cyclotron Heating In A Plasma Experiment at UW-Madison (2.45 GHz, B=875 Gauss)

In the DIII-D tokamak, use 110 GHz second harmonic heating (B~2 Tesla)

Other Practical Applications: EM Emission from Charged Particle Acceleration

 Electron cyclotron emission (measure T_e profiles) Produced by acceleration of gyrating charged particle EM radiation emitted at discrete frequencies:

$$\omega = n\omega_{ce} \qquad \omega_{ce} = \frac{eB}{m_e}$$

Detected radiated power is proportional to T_e :

$$I(\omega) = \frac{\omega^2 k T_e}{8\pi^3 c^2}$$

Bremsstrahlung emission

Produced by deceleration of deflected charged particle

$$I(\omega) \propto \frac{n_e^2 Z_{eff} g}{\sqrt{T_e}} \exp\left(-\frac{\hbar\omega}{kT_e}\right)$$

Radiated power depends on $n_{\rm e},$ Te, charge state $\rm Z_{eff}$ (can be used to measure $\rm Z_{eff}$)

B

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \hat{\mathbf{x}} \qquad \mathbf{B} = B_z \hat{\mathbf{z}}$$

В •

 \mathbf{E}

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \mathbf{\hat{x}} \qquad \mathbf{B} = B_z \mathbf{\hat{z}}$$
$$\overset{\mathbf{B}}{\overset{\mathbf{O}}{\overset{\mathcal{O$$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \mathbf{\hat{x}} \qquad \mathbf{B} = B_z \mathbf{\hat{z}}$$
$$\overset{\mathbf{B}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\mathbf{E}}}} \mathbf{y} \qquad \text{Accelerates due to E}$$
$$\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{O}}{\mathbf{E}}}} \mathbf{x} \qquad \text{Faster velocity increases vxB}$$
$$\overset{\mathbf{F}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\mathbf{E}}}} \mathbf{x} \qquad \text{Decelerates}$$

Guiding Center Drift Due to E x B

Х

В •

 \mathbf{E} -

$$v_y = \mp v_\perp \sin\left(\frac{|q|B_z}{m}t + \phi_0\right) - \frac{E_x}{B_z}$$

Electron guiding center also drifts in the direction $-\mathbf{\hat{y}}$

The ExB drift can be written more generally as

$$\mathbf{v_E} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

- ExB drift is independent of charge and mass
- Both electrons and ions move together

Other Forces Can Cause Guiding Center Drift

Any force perpendicular to B can cause particles to drift

Drift due to force:
$$\mathbf{v_d} = \frac{1}{q} \frac{\mathbf{F} \times \mathbf{B}}{B^2}$$

Examples of forces: $\mathbf{F_g} = m\mathbf{g}$ gravity
 $\mathbf{F_g} = \frac{mv_{\parallel}^2}{\mathbf{F}}$ contributed

$$\mathbf{F_{cf}} = rac{m v_{\parallel}^2}{R_c} \mathbf{\hat{r}}$$
 centrifugal

- Bend the magnetic field into a donut shape
- No end losses because the field lines go around and close on themselves
- BUT a particle following a toroidal magnetic field would experience \mathbf{F}_{cf}

Curvature Drift Due to Bending Field Lines

Spatially Varying Magnetic Field Strength Also Causes Drift

N turns *R I* $B = \frac{\mu_o NI}{2\pi R}$

Spatially Varying Magnetic Field Strength Also Causes Drift

 The gyro-radius will be larger where the field is weaker and smaller where the field is stronger

Spatially Varying Magnetic Field Strength Also Causes Drift

- The gyro-radius will be larger where the field is weaker and smaller where the field is stronger
- The resulting drift velocity is described by:

$$\mathbf{V}_{\nabla \mathbf{B}} = \frac{m v_{\perp}^2}{2qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

What Happens To Charged Particles In A Purely Toroidal Magnetic Field?

 Charged particles in a curved magnetic field will experience both ∇B and curvature drift: these effects add

Charged Particles Will Drift Outward

 Charged particles in a curved magnetic field will experience both ∇B and curvature drift

• This means that no matter what, particles in a torus with a purely toroidal field will drift radially out and hit the walls.

Tokamak Solution: Add Poloidal Magnetic Field

Toroidal: long way around

- Poloidal: short way around
- 1. Use external coils to apply a toroidal magnetic field
- 2. Drive toroidal current in the plasma to generate a poloidal magnetic field

- The resulting helical magnetic field is much better at confining charged particles.
- The challenge: how to drive current in plasma in steady state while keeping the plasma stable and free of disruptions?

There Are Two Main Classes of Particle Orbits In Tokamaks

$$\mathbf{V}_{\mathbf{R}} + \mathbf{V}_{\nabla \mathbf{B}} = \frac{m}{q} \frac{\mathbf{R}_{\mathbf{c}} \times \mathbf{B}}{R_{c}^{2} B^{2}} \left(v_{\parallel}^{2} + \frac{1}{2} v_{\perp}^{2} \right)$$

Particles with sufficient $\boldsymbol{v}_{||}$ will follow the helical magnetic field around the torus

Particles with lower $\boldsymbol{v}_{|\,|}$ are reflected as they encounter stronger B and therefore execute "banana" orbits as they precess around the torus B 51

Banana Orbits

Image credit: euro-fusion.org

Classifying Particle Orbits In Tokamaks Is Important for Understanding Basic Physics Mechanisms Like Wave-Particle Interactions

Image credit: Pace et. al., Physics Today (2015)

Particle Resonance With Alfvén Eigenmode (AE) Instabilities

• Occurs when the wave and particle orbit phases match after many cycles:

Particle Resonance With Alfvén Eigenmode (AE) Instabilities

• Occurs when the wave and particle orbit phases match after many cycles:

The Fast Ion Distribution Function Is "Most Simply" Described Using Constants of Motion

plasmas, Imperial College Press (2001)]

Small Changes in Particle Energy Can Cause Large **Changes in Orbit Topology**

plasmas, Imperial College Press (2001)]

There Can Be Several Different Populations of Fast Ions In Fusion Devices

- Example of distribution function F(E,μ,P_φ) for neutral beam injection, which is anisotropic and non-Maxwellian
- The distribution function for fusion products (alpha particles) is isotropic

[R. B. White, Theory of toroidally confined plasmas, Imperial College Press (2001)]

Active Research: Calculating the Energetic Particle Distribution Function After Transport by Instabilities

- Transport can occur if fast ions intersect AE resonances in this "phase space" plot
- In certain conditions, AEs can cause significant transport of fast ions and significantly degrade fusion performance
 - → We are working on controlling/avoiding AEs

Conclusions

- Charged particles undergo gyromotion about magnetic fields, and are free to move along the magnetic field line.
- Depending on magnetic field geometry or the presence of other forces like electric fields, particles can drift across field lines (and even leave the system→hit the walls).
- (One) challenge for fusion energy research is to confine enough charged particles that are energetic enough for long enough lengths of time to achieve sustained fusion.

