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A simplistic view of the scientific method:

1. Theorists think up theories.
2. Generate a hypothesis.
3. Test hypothesis with an experiment.
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The practice of science is much more complicated, 
and computation plays a key role.
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Experiments
+   Ultimately matter.
+   Grounded in reality.
- Complicated.
- Expensive.
- You cannot measure 

or control everything.

Analytic Theory
+   Determine scalings.
+   Physical insight.
- Often limited to simplified geometry.
- Need to make many approximations.

Computation
+   Can solve equations with fewer approximations.
+   Everything can be measured.
+   Effects can be turned on & off.
- Worries about bugs, resolution, numerical instabilities.
- Harder to get insight & scalings.

Need theory to know which equations to simulate.
Test codes by comparing to theory in various limits.
Analysis of equations informs numerical methods.

Simulations can inspire and test theory,
indicate good approximations.

Validate models.
Experimentally relevant values.
Inspire models.

Design facilities.
Inspire experiments.
Interpret data.

Mathematical models (equations)
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direction	for	|B|	it	would	confine	particles	as	well	as	a	tokamak.
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Theory:	Boozer	(1983)	– If	a	stellarator could	have	a	symmetry	
direction	for	|B|	it	would	confine	particles	as	well	as	a	tokamak.

Computation:	Nuhrenberg &	Zille	(1988)	– Found	a	numerical
example.

Theory:	Garren &	Boozer	(1991)	–
Such	a	symmetry	cannot	be	
achieved	exactly.

Computation:	Landreman et	al	
(2019)	– The	equations	derived	by	
Garren &	Boozer	enable	a	practical	
algorithm	to	generate	
quasisymmetric stellarators.



In many ways, scientific computing 
is a lot like experiment.

• Keeping	an	experiment	or	code	
running	is	a	game	of	whac-a-mole.	
(Alignment	of	optics	drifts,	sysadmins
update	some	library,	‘bitrot’,	…)

• A	good	dataset	is	precious.

• Must	keep	lab	notebooks.

• Must	think	about	data	management.

• Tradeoff	between	carefulness	&	
getting	somewhere:

– You	never	have	time	to	really	
understand	all	the	components.

– There	are	always	too	many	
mysteries.	Need	to	judge	which	are	
worth	tracking	down.
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Computational plasma physics

• The role of computation in science.
• Diffusion equation example

– Collocation vs modal discretization
– Explicit vs implicit time advance
– Numerical (in)stability

• Challenges in simulating plasmas.
• Examples of plasma simulations.
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Example: 1D diffusion
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∂T
∂t

= ∂2T
∂x2

+ log x +1( )		T x ,t( ) , 		x∈ 0,	1⎡⎣ ⎤⎦ , 			t ∈ 0,	∞⎡⎣ )

		T x ,0( ) =0,			T 0,t( ) =0,			T 1,t( ) =0.
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∂T
∂t

= ∂2T
∂x2

+ log x +1( )		T x ,t( ) , 		x∈ 0,	1⎡⎣ ⎤⎦ , 			t ∈ 0,	∞⎡⎣ )

		T x ,0( ) =0,			T 0,t( ) =0,			T 1,t( ) =0.
Discretize in space with a 
“collocation” approach: 
Store T on gridpoints xj: 	

Tj =T x j( )
Could also use a “modal” 
discretization:
Store amplitudes aj of some 
basis functions ϕj:

	
T x( ) = ajφ j x( )

j
∑
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∂T
∂t

= ∂2T
∂x2

+ log x +1( )		T x ,t( ) , 		x∈ 0,	1⎡⎣ ⎤⎦ , 			t ∈ 0,	∞⎡⎣ )

		T x ,0( ) =0,			T 0,t( ) =0,			T 1,t( ) =0.
“Finite difference” derivatives:

		

∂T
∂x

⎛
⎝⎜

⎞
⎠⎟ x j

= lim
h→0

T x j +h( )−T x j −h( )
2h

≈
Tj+1/2 −Tj−1/2

Δx
.

Discretize in space with a 
“collocation” approach: 
Store T on gridpoints xj: 	

Tj =T x j( )
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+ log x +1( )		T x ,t( ) , 		x∈ 0,	1⎡⎣ ⎤⎦ , 			t ∈ 0,	∞⎡⎣ )

		T x ,0( ) =0,			T 0,t( ) =0,			T 1,t( ) =0.

		

∂T
∂x

⎛
⎝⎜

⎞
⎠⎟ x j

= lim
h→0

T x j +h( )−T x j −h( )
2h

≈
Tj+1/2 −Tj−1/2

Δx
.

		

∂2T
∂x2

⎛

⎝⎜
⎞

⎠⎟ x j
≈
Tj+1 −Tj⎡⎣ ⎤⎦− Tj −Tj−1⎡⎣ ⎤⎦

Δx( )2

Discretize in space with a 
“collocation” approach: 
Store T on gridpoints xj: 	

Tj =T x j( )
“Finite difference” derivatives:



We’ve discretized space; now discretize time.
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∂Tj
∂t

=
Tj+1 −Tj⎡⎣ ⎤⎦− Tj −Tj−1⎡⎣ ⎤⎦

Δx( )2
+ log x j +1( )

∂Tj
∂t

⎛

⎝
⎜

⎞

⎠
⎟
x j ,tm

≈
Tj
m+1 −Tj

m

Δt
.Introduce	a	time	grid	tm.		We	store		Tjm =T x j ,tm( ).
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∂Tj
∂t

=
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⎟
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∂Tj
∂t

=
Tj+1 −Tj⎡⎣ ⎤⎦− Tj −Tj−1⎡⎣ ⎤⎦

Δx( )2
+ log x j +1( )

If	we	choose	tm,	we	get	an	explicit formula	for	updating	T:			“Forward	Euler”

Tj
m+1 −Tj

m

Δt
=
Tj+1
m −Tj

m⎡⎣ ⎤⎦− Tj
m −Tj−1

m⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )

Should	we	evaluate	right-hand	side	at	tm or	tm+1?

∂Tj
∂t

⎛

⎝
⎜

⎞

⎠
⎟
x j ,tm

≈
Tj
m+1 −Tj

m

Δt
.Introduce	a	time	grid	tm.		We	store		Tjm =T x j ,tm( ).
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∂Tj
∂t

=
Tj+1 −Tj⎡⎣ ⎤⎦− Tj −Tj−1⎡⎣ ⎤⎦

Δx( )2
+ log x j +1( )

Tj
m+1 =Tj

m +Δt
Tj+1
m −Tj

m⎡⎣ ⎤⎦− Tj
m −Tj−1

m⎡⎣ ⎤⎦
Δx( )2

+Δt log x j +1( )

If	we	choose	tm,	we	get	an	explicit formula	for	updating	T:			“Forward	Euler”

Tj
m+1 −Tj

m

Δt
=
Tj+1
m −Tj

m⎡⎣ ⎤⎦− Tj
m −Tj−1

m⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )

Should	we	evaluate	right-hand	side	at	tm or	tm+1?

∂Tj
∂t

⎛

⎝
⎜

⎞

⎠
⎟
x j ,tm

≈
Tj
m+1 −Tj

m

Δt
.Introduce	a	time	grid	tm.		We	store		Tjm =T x j ,tm( ).



In an ‘implicit’ method, terms other than the 
d/dt term are evaluated at the new time.
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“Backward	Euler”
Tj
m+1 −Tj

m

Δt
=
Tj+1
m+1 −Tj

m+1⎡⎣ ⎤⎦− Tj
m+1 −Tj−1

m+1⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )
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“Backward	Euler”

Tm+1 −Tm

Δt
=
!
DTm+1 + log x j +1( ) ,

		 

!
D= 1

Δx( )2
−2 1 0 "
1 −2 1
0 1 −2 #
$ # #

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Let	Tm 	be	a	vector	of	the	Tjm 	values:
Derivative becomes differentiation matrix:

Tj
m+1 −Tj

m

Δt
=
Tj+1
m+1 −Tj

m+1⎡⎣ ⎤⎦− Tj
m+1 −Tj−1

m+1⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )
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“Backward	Euler”

		 

!
D= 1

Δx( )2
−2 1 0 "
1 −2 1
0 1 −2 #
$ # #

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Tm+1 − Δt 	
!
DTm+1

=
!
I−Δt 	 !D⎛

⎝⎜
⎞

⎠⎟
Tm+1

" #$$ %$$ =Tm +Δt 	 log x j +1( )

Derivative becomes differentiation matrix:

Tm+1 −Tm

Δt
=
!
DTm+1 + log x j +1( ) ,
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Tj
m+1 −Tj

m

Δt
=
Tj+1
m+1 −Tj

m+1⎡⎣ ⎤⎦− Tj
m+1 −Tj−1

m+1⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )
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⎜
⎜
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⎠
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⎟
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⎤
⎦
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“Backward	Euler”

		 

!
D= 1

Δx( )2
−2 1 0 "
1 −2 1
0 1 −2 #
$ # #

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

• Implicit methods require a 
matrix inversion, so each time 
step is slower than in an 
explicit method.

• In exchange, Δt can be larger 
without numerical instability. 

Derivative becomes differentiation matrix:

Tm+1 =
!
I − Δt 	

!
D( )−1 Tm +Δt 	 log x j +1( )⎡

⎣
⎤
⎦

Tm+1 − Δt 	
!
DTm+1

=
!
I−Δt 	 !D⎛

⎝⎜
⎞

⎠⎟
Tm+1

" #$$ %$$ =Tm +Δt 	 log x j +1( )

Tm+1 −Tm

Δt
=
!
DTm+1 + log x j +1( ) ,

Let	Tm 	be	a	vector	of	the	Tjm 	values:

Tj
m+1 −Tj

m

Δt
=
Tj+1
m+1 −Tj

m+1⎡⎣ ⎤⎦− Tj
m+1 −Tj−1

m+1⎡⎣ ⎤⎦
Δx( )2

+ log x j +1( )



• MATLAB example
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The numerical instability can be 
understood using Fourier analysis.

31

Tm+1 −Tm

Δt
= ∂2Tm

∂x2

Drop	inhomogeneous	term	– amounts	to	subtracting	off	long-time	solution.

Tm+1 −Tm

Δt
= ∂2Tm+1

∂x2

Explicit Implicit

Consider	Fourier	modes	Tm x( )=Tmexp ikx( ):

(Really	we	should	write	out	the	spatial	discretization.	
Here	we	won’t	to	simplify	the	presentation.)
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Tm+1 −Tm

Δt
= ∂2Tm

∂x2

Drop	inhomogeneous	term	– amounts	to	subtracting	off	long-time	solution.

Consider	Fourier	modes	Tm x( )=Tmexp ikx( ):
Tm+1 −Tm

Δt
= −k2Tm

Tm+1 −Tm

Δt
= ∂2Tm+1

∂x2

Tm+1 −Tm

Δt
= −k2Tm+1

Explicit Implicit
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Tm+1 −Tm

Δt
= ∂2Tm

∂x2

Drop	inhomogeneous	term	– amounts	to	subtracting	off	long-time	solution.

Consider	Fourier	modes	Tm x( )=Tmexp ikx( ):
Tm+1 −Tm

Δt
= −k2Tm

Tm+1

Tm =1− Δt 	k2!"# $#

Rearrange:

Tm+1 −Tm

Δt
= ∂2Tm+1

∂x2

Tm+1 −Tm

Δt
= −k2Tm+1

Explicit Implicit

		

If		Δt >2/k2 	for	largest	k ,	
then	 T 	increases.
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Tm+1 −Tm

Δt
= ∂2Tm

∂x2

Drop	inhomogeneous	term	– amounts	to	subtracting	off	long-time	solution.

Consider	Fourier	modes	Tm x( )=Tmexp ikx( ):
Tm+1 −Tm

Δt
= −k2Tm

Tm+1

Tm =1− Δt 	k2!"# $#

Rearrange:

Tm+1 −Tm

Δt
= ∂2Tm+1

∂x2

Tm+1 −Tm

Δt
= −k2Tm+1

Tm+1

Tm = 1
1+Δt 	k2

Magnitude	always	<1
!"# $#

Explicit Implicit

		

If		Δt >2/k2 	for	largest	k ,	
then	 T 	increases.
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Why not just numerically solve 
Maxwell’s equations + Lorentz force?
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		∇⋅B=0
		∇⋅E = ρ /ε0

		
∇×E = − ∂B

∂t

			
∇×B= µ0J+

1
c2

∂E
∂t

		
mdv
dt

= q E+ v×B( )
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Typical lab plasma has ~ 1020 particles.
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Maxwell’s equations + Lorentz force?
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		∇⋅B=0
		∇⋅E = ρ /ε0

		
∇×E = − ∂B

∂t

			
∇×B= µ0J+

1
c2

∂E
∂t

		
mdv
dt

= q E+ v×B( )

Typical lab plasma has ~ 1020 particles.

Storing a floating-point number (“double precision”) takes 8 bytes.

Just storing (x, y, z, vx, vy, vz) for 1020 particles would take
6×8×1020 bytes ~ 5×109 terabytes.



Why not just numerically solve 
Maxwell’s equations + Boltzmann equation?
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∂ f
∂t

+ v ⋅∇f + q
m
E+ v×B( )⋅∇v f =

df
dt

⎛
⎝⎜

⎞
⎠⎟ collisions

High number of dimensions + scale separation are challenges.

		Distribution	function		f t ,x , y ,z ,vx ,v y ,vz( )



Why not just numerically solve 
Maxwell’s equations + Boltzmann equation?
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∂ f
∂t

+ v ⋅∇f + q
m
E+ v×B( )⋅∇v f =

df
dt

⎛
⎝⎜

⎞
⎠⎟ collisions

High number of dimensions + scale separation are challenges.

Suppose spatial grid scale is ~ electron gyroradius: ~ 10-5 m.
Suppose plasma size is 1 m3 è (105)3 = 1015 spatial grid points.
Suppose velocity grid is 10×10×10.
Storing a double-precision number takes 8 bytes.
So just storing  f would take 8×103×1015  bytes ~ 107 terabytes.

		Distribution	function		f t ,x , y ,z ,vx ,v y ,vz( )
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Fusion plasmas exhibit enormous ranges of 
temporal and spatial scales.

• Nonlinear MHD-like behavior couples many of the time- & length-scales.

• Even within the context of resistive MHD modeling, there is stiffness and 
anisotropy in the system of equations.

Characteristic Lengths in ITER (m)
10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

ion
gyroradius

electron
gyroradius

ion
skin depth

effective particle
mean free path

equilibrium
gradient

plasma
circumference

electron
skin depth

Characteristic Times in ITER (s)
10-12 10-10 10-8 10-6 10-4 10-2 100 102 104

Alfven wave
propagation

electron plasma
oscillation

electron
gyromotion

drift
rotation global resistive

diffusion
energy
turnover

ion
gyromotion

Carl Sovinec, http://www.csm.ornl.gov/workshops/SciDAC2005/SovinecTalk/scidac05_talk.pdf

• Using 104 time steps in a simulation can be reasonable. 1016 is not.

• Using 103 grid points/dimension in a simulation can be reasonable. 109 is not.



Different classes of code are used to handle 
different ranges of scales.
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Plasma turbulence can now be simulated 
using ‘gyrokinetic’ equations.

45Figure + movie by GENE group: genecode.org

• Average equations over gyration to eliminate the fastest timescale.
• Only keep gyroradius scale perpendicular to B. Use coarser grid along B.



• GENE movie
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“Extended MHD” codes are used to simulate 
large-scale plasma dynamics.

• Fluid equations: reduced dimensionality yields huge computational savings, 
though some kinetic effects not captured (e.g. calculating bootstrap j).

• More sophisticated equations than ideal magnetohydrodynamics.
• Diffusion terms added to mock up the underlying turbulent transport.

47M3D-C1 code: Ferraro et al (2010)

HiFi code: 
Shaffner et al (2014)



• M3D-C1 movie
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Sophisticated fluid & kinetic computations 
are also used to simulate plasmas in space. 

49

Heliosphere fluid simulation: Opher et al (2015)
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• Kinetic reconnection movie



Numerical optimization is central to the 
design of modern stellarators.

51

Electromagnetic coils

Magnetic surfaces, plasma Magnetic field lines

Plasma shape varied to extremize
• Confinement of particle orbits,
• MHD stability,
• Low plasma current,
• …

Coil shapes varied to produce the desired 
plasma shape.

W7-X:



Conclusions: 
Is computational plasma physics right for you?

• Need to know analytic plasma theory too, lots of algebra.

• Need to keep up with numerical methods & libraries.

• Need to spend lots of time dealing with e.g. stupid compiler errors.

• Need to be very organized.

• Can work anywhere with internet. (Nice for parents.)

• Funding seems more stable than in experiment?

• Coding & algebra = opportunities for “flow”.

• Good if approximations like 3 ≫ 1 make you nervous.

• Good if you like being omnipotent and omniscient.

• You can work on exciting inter-disciplinary problems at the cutting 
edge of physics, applied math, and computer science.
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Extra slides



Example of computation leading theory: 
impurity transport in a stellarator.
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SFINCS code

Momentum-corrected DKES code

A Mollen et al, Phys Plasmas (2015)

(density / temperature2)

2 codes gave very different predictions for one of the transport coefficients:

Big

Small

Small

Big

Led to new analytic theory: a difference between the codes that was thought to 
be unimportant (diffusion in |v| due to collisions) is actually important here.



Using Fourier modes or orthogonal polynomials, 
you can achieve ‘spectral accuracy’
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		 E.g.,	Chebyshev	grid	for	x j 	and	associated		
!
D :

Best conceivable precision
due to roundoff error.

Error	in	T(x=0.5,	t=0.1),	loglog plot
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Error decreases algebraically



Using Fourier modes or orthogonal polynomials, 
you can achieve ‘spectral accuracy’
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		 E.g.,	Chebyshev	grid	for	x j 	and	associated		
!
D :

Best conceivable precision
due to roundoff error.

Error	in	T(x=0.5,	t=0.1),	loglog plot

100 101 102

Number of grid points

10-15

10-10

10-5

100
Finite difference
Chebyshev
1/N2 scaling
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Number of grid points
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Same	data	on	a	semilog plot

Error decreases exponentially

Error decreases algebraically


