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Introduction to Turbulence 

and Goals

➢ Turbulence is a characteristic of a fluid flow 

that occurs at high Reynold’s numbers

➢ Plasmas can be approximated as fluids 

because it is a viscous flow travelling at high 

speeds with electromagnetic forces acting on 

them
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➢ The goal of this project is to develop 

methods for analyzing turbulence and 

integrate these methods in the Gkeyll code

➢ For 2D and 3D simulations, the following 

codes were developed:

➢ Convert data to polar coordinates and 

plot the power spectrum of the data

➢ Visualize the data in 3D

➢ Calculate and plot the evolution of 

kinetic energy in a simulation

➢ Calculate and plot the time derivative of 

the kinetic energy

➢ Calculate and plot the enstrophy of a 

simulation 

➢ The Euler equations were used to simulate 

the fluid simulations: 

➢ For the plasma case, the Euler equations 

above were coupled with Maxwell’s 

equations to solve for the magnetic and 

electric fields

➢ 3D simulation of an unsteady flow with a 

decaying vortex 

➢ Simulation was initialized in the code with 

the following initial conditions: 

➢ The visualization of the z-vorticity is shown 

in Figures 6-11 

➢ This simulation can also be analyzed with 

enstrophy, rate of dissipation and 

generation of kinetic energy

Kelvin-Helmholtz

➢ 2D simulation of a velocity shear in a 

continuous fluid with 
𝑢0

𝑐𝑠
= 0.4

➢ Simulated in the Gkeyll code by creating a 

velocity shear in the fluid by making the 

upper half and lower half of the fluid move in 

opposite directions

Orszag-Tang Vortex

➢ This 2D simulation is a subsonic plasma-

fluid simulation, because it approximates 

the plasma as a fluid.

➢ The simulation follows the nonlinear 

evolution and decay of a vortex in an 

existing magnetic field.

➢ As the vortex decays, the magnetic field 

becomes twisted, inducing current sheets.

➢ These current sheets start to interact with 

one another, causing magnetic 

reconnection. 

Future Work

➢ In the 2D case of Kelvin-Helmholtz, 

increasing resolution resolves small 

scales and gives a longer inertial sub-

range.

➢ In the 3D case of Taylor-Green, 

increasing resolution not only resolves 

smaller scales, it also gives a larger 

amount of energy dissipation within the 

system (Figure 12). 

Taylor-Green VortexFigure 1: Turbulence within plasmas visualized in the tokamak [3]

Governing Equations

➢ From Figures 2-4, one can observe many 

parameters changing as the flow goes 

through the three main stages of 

turbulence. In order to analyze the amount 

of power in the fluid, the energy power 

spectrum is plotted. Table 1 below shows 

the resolution of each simulation.

➢ With the number of points in the polar 

spectrum, the energy power spectrum was 

calculated with varying resolution. 

Effect of Resolution on 

Turbulence
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Figure 2: Energy production range of the density of the fluid depicted at 

time = 1. The eddies are starting to develop and the waves are 

beginning to interact with each other.

Figure 3: The inertial sub-range of the fluid density depicted at time = 

10. Three main vortices are shown in the figure and the flow starts to 

exhibit turbulent characteristics. The eddies are highly energetic, 

perturbing the flow. 

Figure 4: The dissipation region of the flow density depicted at time = 

20. The vortices have interacted with one another to create two big 

vortices. Most of the energy in the fluid has dissipated. 

Table 1: The number of ‘bins’ or 

points given in the polar coordinates 

when the data was mapped. The 

number of bins was found by taking 

the resolution in one dimension and 

multiplying by the square root of 2. 

Figure 5: Energy power spectrum with varying resolutions is depicted. It 

has been observed that the power spectrum obeys Kolmogorov 1941 in 

the inertial sub-range, having a slope near -1.667. As resolution 

increases, the fluctuations in the data decreases because the grid 

becomes more refined. 

Figure 12: Enstrophy plot with 

increasing resolution as a 

function of t*. The peak occurs 

before t* = 10, which is in 

agreement with Figures 6-11. 

Figure 13: Total kinetic energy 

plotted with increasing 

resolution as a function of t*. 

As the vortex decays, it is 

expected for the kinetic energy 

to decrease.

Figure 16: The energy power 

spectra with increasing 

resolution. As the resolution is 

increased, the number of 

fluctuations within the data 

decreases. Compared to Figure 

5, the spectra covers a lower 

range of values although the 

resolution in 3D is less than the 

resolution in 2D. The inertial sub-

range has a slope  of -1.667.   
➢ Analyze more turbulence test cases to 

check if code gives correct results

➢ Analyze more turbulence test cases to 

observe if there are other commonalities 

among turbulence simulations 

➢ Analyze the Orszag-Tang vortex in more 

detail to see why isotropic electric field 

spectra has a sharp initial decay.
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Figure 15: The rate of 

dissipation of total kinetic 

energy plotted with increasing 

resolution as a function of t*. 

Figure 17: Shows the ion density t=0.1 (left figure), t=1.5 (middle 

figure), and at t=2.5 (right figure).  

Figure 21: Depicts the 

isotropic electric field spectra 

for increasing resolution. It is 

currently not known why there 

is a sharp initial decay. 

Figure 20: The energy power 

spectrum for a resolution of 122882. 

The spectrum is more refined than 

Figure 5, and the resolution does not 

have any affect on the energy 

production range. The inertial 

subrange is longer, with a slope of     

-1.6667.

Figure 19: Depicts the current density in the z-direction at t=1 (left 

figure) and at t=2.5 (right figure). 
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Figure 18: Shows the current density in the z-direction at t=0.1 (left 

figure) and at t=0.7 (right figure).  
𝒇 = 𝑞𝑬 + 𝑞𝒗 × 𝑩

Figure 6: Simulation at t* = 3, 

which shows inviscid flow. 
Figure 7: Simulation at t* = 5. 

Figure 8: Simulation at t* = 7. Figure 9: Simulation at t* = 9. 

Figure 10: Simulation at t* = 11, 

which shows fully turbulent flow. 

Figure 11: Simulation at t* = 15, 

which shows turbulent decay. 
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