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Background

Understanding the edge dynamics of

magnetically confined plasmas is an

important aspect of increasing confine-

ment and, eventually, putting fusion

power on the grid, especially for large

fusion machines such as ITER. Edge

turbulence transports hot particles out

of the plasma, both lowering the fusion

power and heating up plasma-facing

materials; therefore, understanding

and controlling edge turbulence is a

critical part of creating smaller and/or cheaper machines. This 

project used deep learning (DL) methods to analyze diagnostic data 

from the plasma edge of NSTX; the goal was both to search for un-

identified patterns and to lay the groundwork for future DL 

projects in plasma physics.



The diagnostic: Gas Puff Imaging

In this project we analyzed images of the plasma edge of NSTX 
captured using a technique called Gas Puff Imaging (GPI) (Fig 
1). In this method, neutral gas is puffed into a region of the plasma 
edge, where the neutral gas’s excited electrons emit characteristic 
wavelengths of light. Those wavelengths are then filtered out and 
captured by a high-speed camera.

Figure 1: GPI 

hardware in NSTX. (a) 

is a typical radial vs. 

vertical cross-section 

of NSTX showing the 

GPI field of view. (b) 

shows the GPI 

hardware inside the 

vessel. Reproduced 

with permission from 

Zweben et al., Phys 

Plasmas 24, 102509 

(2017).



DL is a subset of machine learning (ML)

usually used with images or data that is 

best represented as an array. Both ML and DL are being developed as 

techniques to efficiently analyze large amounts of data, which is an 

important capability to develop as scientific discovery becomes more and 

more data-heavy. In this project, we explored the capability of two deep 

learning frameworks (a Convolutional Neural Network or CNN, Fig 2, 

and an Autoencoder or AE, Fig 5) to classify or find patterns in GPI data. 

Motivation

Compared to other STEM and physics fields, ML and DL are not widely 

used in plasma physics. This project aims to (1) explore utility of DL in 

fusion science, (2) efficiently identify patterns in large datasets, and (3) 

develop relationships between identified patterns and physics properties 

(e.g. L-mode or H-mode confinement). Success of this project could 

encourage more use of these techniques in plasma computation 

and data analysis.
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Methods and Results:
CNN Figure 2: A graphic of the CNN’s architecture

Input:

80x64

6 convolutions 

and maxpool

16 conv’s 

and maxpool

120 nodes 84 nodes

Output: 

probability for

4 classes

We used a CNN (Fig 2) to classify images into one of 

four classes (see pictures at right). Table 1 shows how 

changing functions or parameters in the network 

affected the classification accuracy. Once we had a 

network that could accurately classify images, we 

analyzed how the network was doing this task, i.e. 

what features or patterns the network was picking out 

that led to it assigning a particular class.



Training 

data size

Activation 

function

Optimizer Batch 

size

% 

correct

20,000 Tanh SGD 4 58

20,000 RELU SGD 10 80

20,000 RELU Adam 2 92

20,000 RELU Adam 10 87

40,000 RELU Adam 4 98

Table 1: Versions of the CNN, with 

classification accuracy. We found that the 

choice of activation function, optimizer, 

batch size, and learning rate (1e-4 for all 

examples shown here) had a significant 

impact on the accuracy. 

Analyzing the CNN: 
Interpretability

After we trained the network to higher than 98% accuracy, we 
wanted to interpret the network: how was it classifying the images? 
We were particularly interested in what image features or 
combinations of features led to a particular class. We found that:

• the part of the image that was most important for classification 
varied. When we obscured (occluded) part of the image then ran it 
through the net, the class probabilities would change (Fig 3). This 
technique seems to indicate that the network is sensitive to 
small scale/small amplitude features.

• certain nodes in the “feature space” (last hidden layer, 84 nodes) 
were only associated with one class and were very good at 
finding images with certain features (Fig 4).



Figure 4 (below): Two examples of nodes that were only 

associated with one class. The images that maximally activated 

these nodes were all from one class and showed very similar 

visual characteristics.

Figure 3 (right): Two examples of occlusion tests. For both (a) 

and (b), the top left is the original image and top right shows how 

much the correct label probability changed for a given occlusion 

location. Notably, the regions where the probability increased are 

very different; far outside the plasma in (a), but inside the plasma 

(especially covering the bright spot, bottom right image) for (b).

(a)

(b)



Potential Improvements

In the first set of 6

convolutions, 3 did

not learn anything:

In the 84-node 

feature space, 

about 10 nodes

never activated.

Both facts could

be used to down-

size the network,

lowering training time with a 

minimal impact on accuracy.

Future Questions

In the feature space, more 

nodes are weighted to-

wards the h-mode classes 

than l-mode classes. What 

is the significance of this?

Would normalizing or trans-

forming the data affect the 

training or accuracy?

How does the trained 

network do when given 

data from shots it was not 

trained on?



Methods and Results: 
Autoencoder

We used a different architecture, called an Autoencoder (AE) (Fig 5), 

to see whether the dimensionality of GPI images could be reduced. 

AEs are trained to reconstruct images from a lower dimensional 

space (the middle layer); we then analyze this layer to see what it 

learned. The idea is if there are underlying patterns in the data, 

the AE will find them when reducing the dimensionality.

Input:

80x64

Middle layer: 

84 nodes

Output:

80x64

Figure 5: A graphic of the Autoencoder’s architecture



By the final training batch (rightmost column in Fig 6), the AE was able 

to reconstruct GPI images reasonably well.

When we analyzed the middle layer, a few preliminary outcomes 

stood out that contrasted with the CNN (see Table 2).

Figure 6: The AE’s training progress, which proceeds left to right. The top row is original training images, 

while the bottom row is the AE’s reconstructed versions, showing the network improving at its task of 

reconstructing images accurately.

Reconstructed 

images

Training

Original 

images



CNN Autoencoder

Supervised learning Unsupervised learning

10 inactive nodes in feature vector 20 inactive nodes in middle layer

Some feature vector nodes were 

associated with only one class

No middle layer nodes were 

associated with only one class

3 out of 6 convolutions were blank, 

convolved images grainy and picked 

out clear features

1 out of 6 convolutions were blank, 

convolved images smooth and did 

not pick out clear features

Table 2: Contrasting the CNN and AE. Significant differences probably arise because the two 

networks were trained differently; the CNN was trained to classify images into categories given 

ground truth labels (supervised learning), whereas the AE was trained to reproduce images 

without any label information (unsupervised learning).



Potential Improvements

Similar to the

CNN, blank

convolutions

and nodes in

all layers that

were always

inactive could

be downsized.

The middle

layer especial-

ly should be

downsized to see what affect 

that has on dimensionality and 

reconstruction.

Future Questions

Would normalizing or 

transforming the data affect 

the training or accuracy? 

What about using BCELoss?

What would happen if you 

took the reconstructed 

images from an AE and run 

them through a trained CNN?

What features would appear if 

we fed the AE an artificial 

middle layer with 

predetermined nodes 

activated?



Conclusion

This project was meant to be a demonstration of capability: can 

ML/DL techniques be useful in plasma physics as a data processing 

and analysis tool?

So far, we’ve been able to use DL to:

• accurately classify GPI image data into four relevant categories

• identify images with similar visual features

• pick up on small scale/small amplitude signals that would be 

difficult for a human to find

• reduce dimensionality of GPI images with low loss of information



Based on these results, in the future, DL might be used to:

• classify images into categories other than the ones used here (e.g. 

ELM, RF heating, etc.)

• suggest classifications for new or unlabeled data

• provide real-time information about plasma state

• inform theory or further analysis through what features/spatial 

locations a network learns is important

To match other STEM and physics fields, plasma physics can 

incorporate Machine Learning and Deep Learning into its 

computation and data analysis to automate certain processes, save 

time, or gain insight. With more research into interpretability, ML/DL 

could be developed into a robust method in plasma physics for 

dealing with large datasets and problems that would be 

intractable without the aid of computers.
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