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We characterize the behavior of a flexible surface dielectric 
barrier discharge (DBD) device operated in ambient air at low 
duty cycles (< 50%). The device exhibits latencies of the order 
of seconds between turn-on and the beginning of glow 
activity, and its discharge current is influenced by external 
airflows of the order of a few m/s. We tentatively attribute 
the former effect to water desorption and the latter to 
changing metastable densities over the device.

Abstract

• DBD – Cold, nonthermal plasma at 1 atm; typical [1]:
• Te ~ 1-10 eV, Tg ~ average gap temp. ~ room temp.
• ne ~ 1014 – 1015 cm-3

• Dielectric barrier restricts current  flow [2]; charge 
accumulation on barrier “chokes off” discharge. 

• Individual discharges:
• 10-100 ns, 0.1 – 1 nC [1]
Relevant electron production processes [3]:
• A + e- => A+ + e- + e-
• A* + e- => A+ + e- + e-
• A* + B => A + B+ + e-

• Light production [8], surface treatment [9]
• For applications, behavior in open air is important
• Interesting phenomena arise when device is operated at 

low (0.1 – 0.5) duty cycles
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• Typical voltages: 2 kV AC, 40 kHz (resonance), Typical duty cycles: 0.1-0.5
• Measure voltage drop, current to ground, charge, and light from surface.
• Measure dissipated energy with V-Q Lissajous figures [10]
• Resonance FWHM: Δ𝜔 = 23,000 𝑠−1, Δ𝑓 = 3.7 𝑘𝐻𝑧
• Changes in 𝐶 → changes in 𝜔𝑟𝑒𝑠 → changes in 𝑉 at constant 𝜔
• Δ𝑉 > 50% over time for resonance; Δ𝑉 ∼ 1% even at steady state
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• Parallelogram V-Q figure, 
discharge “spikes” [2]

• 𝐶𝑑𝑖𝑠 ≈ 40 − 50 𝑝𝐹, 𝐶𝑜𝑓𝑓 ≈

30 − 40 𝑝𝑓, 𝑃𝑑𝑖𝑠 ≈ 3𝑊
• Fast photos: diffuse glows 

in cavities

10 ns 
photo

• Seconds-long latency between turn-
on and glow inception

• Preheating reduces delay  both on-
and off-resonance

• Off-resonance, V lower with heating
• Ignition ≡ 10% of max PMT signal
• V error ~1% , 20 V; C error ~ 0.2 pF

Glow Latency
• Possible cause: Δ𝑇 → Δ𝐶 → 𝑉 ↑ (from resonance effect)

• Capacitance decreases with pre-heating
• Preheating: 𝑉 ↑ on-resonance, 𝑉 ↓ off-resonance
• Ignition faster on- and off-resonance; reject explanation

Note: V-errors estimated from 1% fluctuation, C-errors from fitting

• Possible cause: (𝑇𝑔𝑎𝑠↑) → (𝑛0 ↓) → (
𝐸

𝑛0
↑) → (𝛼 ↑)

• Δ𝑇 < 10∘ 𝐶 →
Δ𝑇

𝑇𝑟𝑜𝑜𝑚
<

10 𝐾

298 𝐾
≈ 3% →

Δ𝑛

𝑛0
≤ 3%

• As 𝛼 = 𝑛0 ∗ 𝑓
𝐸

𝑛0
[11], f increasing, Δ𝑉 ↓ offsets Δ𝑛 ↓ off-res

•
Δ𝑉ℎ𝑒𝑎𝑡

𝑉𝑛𝑜𝑛
=

−60 𝑉

1310 𝑉
≈ 5% > 3%, Δ𝑉ℎ𝑒𝑎𝑡 < 0; expect 𝛼ℎ ≤ 𝛼𝑐

• Possible cause: Δ𝑇 → water desorption from Kapton
• Known [12] that water forms monolayer on Kapton

• [13] 𝐸𝑎𝑑ℎ = 𝛾𝑤𝑎𝑡𝑒𝑟 ∗ (1 + cos 𝜃 ), 𝛾𝑤𝑎𝑡𝑒𝑟 = 72
𝑚𝐽

𝑚2 = surf. 

energy, [14] 𝜃 = 75∘ = Water-Kapton contact angle

• 𝐸𝑎𝑑ℎ ≈ 91
𝑚𝐽

𝑚2; water diam. 3 × 10−10 𝑚,

𝐸𝑎𝑑ℎ~ 50 𝑚𝑒𝑉; Δ𝐸ℎ𝑒𝑎𝑡~ 𝑘Δ𝑇 ~ 1meV,
• Δ𝐸ℎ𝑒𝑎𝑡 not vanishing compared to 𝐸𝑎𝑑ℎ; cannot rule out effect

Airflow
• Possible causes: 

• Changing device temperature
• Changing metastable density - fewer seed electrons  [15]
• Max speed: 5 m/s, discharge duration: 100 ns, AC period: 25 µs
• 0.5 µm and 125 µm movement, <0.1 % and <20% of cavity size
• min speed 2 m/s, duty cycle 10 ms => 2 cm ≈ device size
• Airflows could eliminate metastable build-up across duty cycles

Discussion

• “Spike” size decreases with airflow
• Quantify by spline-fitting data and 

counting data points > 6σnoise from 0
• No clear trend for dissipated power
• No clear difference 2.5 m/s vs 5 m/s
• Discharge still diffuse with airflow
• Power error: ~4%
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• DBD design:
• Surface discharge
• Cavity array

• DBD device:
• HV electrode (flat copper tape)
• Dielectric layer (Kapton, 100 µm) (𝜖𝑟𝑒𝑙 ≈ 3.5)
• Patterned ground electrode,  ENIG coated, 30 µm thick

• 200 (10x20) square cavities in ground electrode (s = 700 
µm)

• 𝐶 ∼ 𝐴
𝜖𝑟𝑒𝑙𝜖0

𝑑
≈ 60 𝑝𝐹
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• When this DBD device is operated in air at low duty cycles, 
temperature and external airflows should be considered

• Future work: 
• Conduct glow latency experiments in dry air  
• Find regime where airflow influence changes with speed

Summary and Future Work


