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Areas	of	ML	applications	in	fusion	science

1. Reduced	models	derived	from	neural	networks

2. Machine	control	and	disruption	avoidance

3. Automated	mode	classification
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Nearly all of the slides in this presentation are
taken from other presentations.

Hyperlink references are listed at the end.



1.	REDUCED	MODELS	DERIVED	FROM	
NEURAL	NETWORKS
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EPED1-NN can reproduce same pedestal structure of EPED1 model

Approach used for other similar problems
● well established theories
● scalar inputs/outputs
● no time history
● different dB filling techniques

● EPED1-NN
● TGLF-NN
● NEO-NN}

O. Meneghini - meneghini@fusion.gat.com / SciDAC PPPL / June 2018



2.	MACHINE	CONTROL	AND	
DISRUPTION	AVOIDANCE
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Tested different algorythms - Generalization at different IP - 
Rumpdown control



Deep RNN can generalize better

Deep RNN can learn invariant representation of 
input features and generalize better:

● Make full use of high dimensional data 
(e.g. profiles) and time-varying features

● Transfer learning: accuracy increase 
when a small number (~5) of JET 
disruptions are added to the test set.

● Accuracy of cross-device prediction and 
comparable to shallow learning on 
single device

J. Kates-Harbeck - jkatesharbeck@g.harvard.edu / SciDAC PPPL / June 2018



● FRNN model: 
○ Convolutional layers to learn 

features from 1D data (profiles)
○ LSTM to learn temporal patterns

● Plug other ML models
○ (SVM, MLP, RF, GBT, etc.)

● HPC to accelerate training and 
hyperparameter tuning

Disruption Prediction via deep Recurrent Neural Network - FRNN

J. Kates-Harbeck - jkatesharbeck@g.harvard.edu / SciDAC PPPL / June 2018



JET Disruption Data   

# Shots Disruptive Nondisruptive Totals 

Carbon Wall 324 4029 4353 

Beryllium 
Wall (ILW) 

185 1036 1221 

Totals 509 5065 5574 

Sample 7 Signals of zero-D time 
traces  (07) 

Data Size (GB) 

Plasma Current 1.8 

Mode Lock Amplitude 1.8 

Plasma Density 7.8 

Radiated Power 30.0 

Total Input Power 3.0 

d/dt Stored Diamagnetic Energy 2.9 

Plasma Internal Inductance 3.0 

JET produces ~  
Terabyte (TB) of   

data per day 

  
~55 GB data 

collected from 
each JET shot 

 
➔ Well over 350 TB total 

amount with multi-    
dimensional data yet to 

be analyzed 



Deep Recurrent Neural Networks (RNNs):  Basic Description 
 ●  “Deep” 

○  Hierarchical representation of complex data, building up salient features 
automatically 

○  Obviating the need for hand tuning, feature engineering, and feature selection 
●  “Recurrent” 

○  Natural notion of time and memory à i.e., at every time-step, the output depends on 
■  Last Internal state “s(t-1)” Recurrence! 
■  Current input x(t) 

○  The internal state can act as memory and accumulate information of what has 
happened in the past 

Image	adapted	from:	colah.github.io	

Internal	
State	
(“memory/	
context”)	



FRNN (“Fusion Recurrent Neural Net”)  Code Performance (ROC Plot) 
 

True	Posi8ves:	93.5%	
False	Posi8ves:	7.5%	

True	Posi8ves:	90.0%	
False	Posi8ves:	5.0%	

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False 
Positives (bad: safe shot incorrectly labeled disruptive). 

RNN Data: 
●  Testing 1200 shots 

from Jet ILW 
campaigns (C28-C30) 

●  All shots used, no 
signal filtering or 
removal of shots 

Jet SVM* work: 
●  990 shots from same 

campaigns 
●  Filtering of signals, 

ad hoc removal of 
shots with abnormal 
signals 

●  TP 80 to 90%, FP 5% 

*Vega, Jesús, et al. "Results of the 
JET real-time disruption predictor in 
the ITER-like wall campaigns." Fusion 
Engineering and Design 88.6 (2013): 
1228-1231. 



FRNN Scaling Results on GPU’s  

•  Tests on OLCF Titan CRAY supercomputer 
–  OLCF DD AWARD:  Enabled Scaling Studies on  
   Titan currently up to 6000 GPU’s 
–  Total ~ 18.7K Tesla K20X Kepler GPUs 
 
     Tensorflow+MPI  
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-0.55

0.3

10 variables
~ 70,000 time slices
394 discharges
195 flattop disruptions
500 decision trees

binary classification problem: disrupted/non-disrupted
graphical depiction of a single tree in a Random Forests

li Ip_error_fraction Vloop
q95 radiated_fraction n1amp

beta_p dWmhd_dt
n/nG Te_HWHM

C. Rea / IAEA-TM FDPVA / May 2017

from a 2D space 
with few points to a 
10D space with 
many thousands of 
points

(x1, x2)
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graphical depiction of a single tree in a Random Forests in a 
classification scheme – disrupted/non-disrupted

C. Rea / IAEA-TM FDPVA / May 2017

fully grown tree

first three layers
of a tree

• features are not scaled a-priori
• at each node, random sub-

selection of features
• impurity minimization (Gini index) 

by choosing the best split 
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how to classify a new sample belonging to the test subset with 
a Random Forests and how to assess the classifier’s accuracy

for all the trees 
in the forest
…

final class will be chosen through majority vote or 
by averaging the probabilities

source: O. Dürr, ZHAW School of Engineering

C. Rea / IAEA-TM FDPVA / May 2017

new observation new observation new observation
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Confusion matrix

confusion matrix is used as an accuracy metrics to assess the 
model’s capability to discriminate between class labels
binary classification -
no time dependency
15ms black window 
before disruption event

successfully
predicted 
disrupted 
samples

false positive 
alarms

missed detections 
(false negatives)

successfully
predicted 

non-disrupted 
samples

disruptednon-disrupted

confusion matrix
percentages are 
normalized with 
respect to each true 
class label

C. Rea / IAEA-TM FDPVA / May 2017
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relative importance ranking extracted from the Random 
Forests – binary classification case – no time dependency

0. 00 0. 06 0. 12 0. 18 0. 24 0. 30
Relative Importance

n1amp

prad_frac

dWmhd_dt

Vloop

ip_error_frac

Te_HWHM

li

n/nG

betap

q95
Variable Importance

• relative variable importance wrt label predictability is defined as mean decrease 
impurity 
– possibility to implement the permutation importance metric

• q95 is the relatively most important variable



NubeamNet: accelerated neutral beam calculations for scenario 
optimization and real-time control

● Problem: Scenario development tools and the real-time plasma control system 
require knowledge of the effect of neutral beams on the plasma for optimization 
and real-time decision making

○ NUBEAM calculates neutral beam heating, current drive, torque, etc., but is a large fraction of the 
calculation time in the scenario development code TRANSP (>30%) and is not suitable for 
real-time use. Aiming to reduce calculation time to microseconds (>6 orders of magnitude)

● Data: Large database of existing NSTX, NSTX-U, DIII-D, and KSTAR TRANSP 
runs augmented by scans of important parameters

● Challenges: 
○ Profile data: A few scalar inputs/outputs, but most inputs/outputs are 1D profiles (~20-60 spatial 

grid points for each quantity).
○ Beam slowing down time: adds a dependence on the time history of inputs. 

M.D. Boyer - mboyer@pppl.gov / SciDAC PPPL / June 2018



NubeamNet: accelerated neutral beam calculations for scenario 
optimization and real-time control

● Solution: Keep it simple - fully connected NN. To address major challenges:
○ Profile data: Principal component analysis of each profile, project data onto reduced set of basis 

profiles. Avoids need for convolutional neural network to address profile data.
○ Beam slowing down time: Augment inputs with low-pass filtered beam powers. Avoids need for 

recurrent neural network to address time-dependence.
○ Planning to compare to a convolutional+recurrent neural network
○ Implementing in PCS and TRANSP

~10us per calculation vs. several seconds

NUBEAM
NubeamNet

M.D. Boyer - mboyer@pppl.gov / SciDAC PPPL / June 2018



3.	AUTOMATED	MODE	CLASSIFICATION
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ALFVÉNIC AVALANCHING 
Alfvén waves 
- MHD wave 
- Subject to kinetic instability 
- Compressional branch is 

analogous to acoustic wave 

[1] E.D. Fredrickson et al. 2013 NF 53 013006 

Magnetic fluctuations from NSTX [1] 

Fast ion loss correlated with drop in 
neutron rate during “avalanches” 

increase B2/2μ0  

Research questions: 
?: What causes mode avalanching? 

?: How can we stop it? 



MACHINE LEARNING FOR FUSION APPLICATIONS  

• Vast increase in speed for certain tasks 

• Data analysis can be done faster 

• Computational predictions can be extracted faster 

• May prove vital for operational performance of a tokamak 

• Can we train an AI to recognise and characterise 
chirping? 

• Potentially feed into overall control system 

• Knowledge of correlations between plasma parameters 
and mode character is key 

• i.e. turbulent suppression of mode chirping [3,4] 

 

[2] E. D. Fredrickson et al. 2014 NF 54, 093007 
[3] V. N. Duarte et al. 2017 NF 57, 054001 
[4] B. J. Q. Woods et al. 2018 NF 58, 082015 

only 2 parameters 

very time consuming to produce 

[2] 



MODE CHARACTER CATEGORIES 

Noise/quiescence Fixed frequency 

Chirping Avalanching 

(Shots 127109, 134851) 



RANDOM FOREST CLASSIFICATION 

• Take an ensemble of trees, and take an average 
classification 

• Linear average (mean) yields the mean accuracy  

• Non-linear averages (mode, RMS) can yield 
higher accuracy than the mean 

• If the standard deviation in accuracies is low 
p2 = 0.67 

p1 = 0.45 

p3 = 0.87 

p4 = 0.87 



BEAM ION BETA 

• Low freq. modes: 

• Avalanche at high % 

• TAEs: 

• Significantly less avalanching 

kink/tearing/fishbones 
(1-30 kHz) 

TAEs 
(50-200 kHz) 

more avalanching more quiescence Measure of fast ion resonant drive 

Generally at high beam ion beta, 
fishbones are very active while 

TAEs are less active 

quiescent – fixed freq. – chirping – avalanching 



BES measurements capture the Alfven-scale evolution
and radial profile of ELM events

8ELM evolution patterns | D. Smith | APS-DPP 2016



• Database of 51 ELM events measured with BES
– 8 radial BES channels spanning pedestal region
– 34 NSTX discharges from 8 run days spanning 4 months
– 1%-16% stored energy loss and observable pedestal collapse
– Most likely type I ELMs
– Time-series from radial measurements condensed into single 

time-series with principle component analysis

Goal – Identify common evolution patterns (if any)
in a database of Type I ELM time-series data

9ELM evolution patterns | D. Smith | APS-DPP 2016



• Hierarchical clustering
– Produces a multi-level hierarchy of objects
– Popularized in genomics
– Requires an similarity metric to quantify 

similarity among time-series

• Time-series similarity metrics
– Time-lag cross-correlation
– Euclidean distance
– Dynamic time warping (DTW)
– Wavelet decomposition

• K-means clustering
– Partition observations

into k mutually
exclusive clusters

Method – Apply unsupervised machine learning 
techniques to identify common ELM evolution patterns

Prat et al, Scientific Reports 3, 3544 (2013)

D. Smith et al,
PPCF 58, 
045003 (2016)

Mathworks.com

10ELM evolution patterns | D. Smith | APS-DPP 2016



Time-lag cross-correlation can 
quantify the similarity of ELM 
time-series data

Hierarchical clustering (I) – Assemble time-lag cross-
correlation metrics into a dissimilarity matrix

Assemble pair-wise metrics 
into a dissimilarity matrix

Larger max correlation ➞ more similar

Blue = high
similarity

Red = low
similarity

11ELM evolution patterns | D. Smith | APS-DPP 2016



Hierarchical clustering (II) – Apply clustering algorithm to 
dissimilarity matrix to identify groups of similar ELMs

D. Smith et al, PPCF 58, 045003 (2016)

High
similarity

Low
similarity

Colors preserved in
remainder of presentation

Blue squares on
diagonal are good
candidate clusters

12ELM evolution patterns | D. Smith | APS-DPP 2016



The identified ELM groups
show similar evolution characteristics

13ELM evolution patterns | D. Smith | APS-DPP 2016



References

• O.	Meneghini et	al,	PoP 2014,	http://dx.doi.org/10.1063/1.4885343

• O.	Meneghini et	al,	NF	2017,	https://doi.org/10.1088/1741-4326/aa7776

• W.	Tang	et	al,	2017	Theory	and	Simulations	of	Disruptions	Workshop,	
https://tsdw.pppl.gov/Talks/2017/Lexar/Wednesday	Session	1/Tang.pdf

• C.	Rea,	R.	Granetz,	et	al,	PPCF	2018,	https://doi.org/10.1088/1361-
6587/aac7fe

• B.	Woods,	PPPL	Theory	Seminar,	
https://theory.pppl.gov/news/seminars/20180628Woods.pdf

• D.	Smith	et	al,	2016	APS-DPP,	
https://nstx.pppl.gov/DragNDrop/Scientific_Conferences/APS/APS-
DPP_16/Contributed	Poster/NP10.00015_Smith_APS2016.pdf

6

http://dx.doi.org/10.1063/1.4885343
https://doi.org/10.1088/1741-4326/aa7776
https://tsdw.pppl.gov/Talks/2017/Lexar/Wednesday Session 1/Tang.pdf
https://doi.org/10.1088/1361-6587/aac7fe
https://doi.org/10.1088/1361-6587/aac7fe
https://theory.pppl.gov/news/seminars/20180628Woods.pdf
https://nstx.pppl.gov/DragNDrop/Scientific_Conferences/APS/APS-DPP_16/Contributed Poster/NP10.00015_Smith_APS2016.pdf
https://nstx.pppl.gov/DragNDrop/Scientific_Conferences/APS/APS-DPP_16/Contributed Poster/NP10.00015_Smith_APS2016.pdf


Fusion/plasma	science	at	U.	Wisconsin
• Physics	Dept.

– S.	Boldyrev,	D.	DenHartog,	J.	Edegal,	C.	Forest,	J.	Sarff,	P.	Terry,	E.	Zweibel
– https://www.physics.wisc.edu/research/areas
– Center	for	Plasma	Theory	and	Computation	https://cptc.wisc.edu/
– Center	for	Plasma	in	the	Laboratory	and	Astrophysics	

http://plasma.physics.wisc.edu/

• Engineering	Physics	Dept.
– R.	Fonck,	C.	Hegna,	G.	McKee,	O.	Schmitz,	C.	Solvenic and	many	in	fusion	

technology
– https://www.engr.wisc.edu/department/engineering-physics/research/
– Pegasus	spherical	torus https://pegasus.ep.wisc.edu/
– Fusion	Technology	Institute	http://fti.neep.wisc.edu/
– Large	collaborations	at	DIII-D,	NSTX-U,	and	W7-X

• Electrical	&	Computer	Engineering	Dept.
– D.	Anderson,	A.	Wendt
– HSX	stellarator https://www.hsx.wisc.edu/
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